Skip to main content
Log in

Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cellular redox status presents broad implications with diverse physiological and pathological processes. Simultaneous detection of both the oxidative and reductive species of redox couples, especially the most representative pair glutathione/hydrogen peroxide (GSH/H2O2), is crucial to accurately map the cellular redox status. However, it still remains challenging to synchronously detect GSH/H2O2in vivo due to lack of a reliable measuring tool. Herein, a ratiometric nanoprobe (UCNP-TB) possessing simultaneous delectability of GSH/H2O2 is established based on a multi-spectral upconverting nanophosphor (UCNP-OA) as the luminescence resonance energy transfer (LRET) donor and two dye molecules as the acceptors, including a GSH-sensitive dye (TCG) and a H2O2-sensitive dye (BCH). With the as-prepared UCNP-TB, real-time and synchronous monitoring the variation of GSH and H2O2in vitro and in living mice can be achieved using the ratio of the upconversion luminescence (UCL) at 540 and 650 nm to that at 800 nm as the detection signal, respectively, providing highly inherent reliability of the sensing results by self-calibration. Moreover, the nanoprobe is capable of mapping the redox status within the drug-resistant tumor and the drug-induced hepatotoxic liver via ratiometric UCL imaging. Thus, this nanoprobe would provide a reliable tool to elucidate the redox state in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495.

    Article  Google Scholar 

  2. Wang, K.; Zhang, T.; Dong, Q.; Nice, E. C.; Huang, C. H.; Wei, Y. Q. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 2013, 4, e537.

    Article  Google Scholar 

  3. Tsang, C. K.; Chen, M.; Cheng, X.; Qi, Y. M.; Chen, Y.; Das, I.; Li, X. X.; Vallat, B.; Fu, L. W.; Qian, C. N. et al. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol. Cell 2018, 70, 502–515.e8.

    Article  Google Scholar 

  4. Fruehauf, J. P.; Meyskens, F. L., Jr. Reactive oxygen species: A breath of life or death? Clin. Cancer Res. 2007, 13, 789–794.

    Article  Google Scholar 

  5. Breckwoldt, M. O.; Pfister, F. M. J.; Bradley, P. M.; Marinkovic, P.; Williams, P. R.; Brill, M. S.; Plomer, B.; Schmalz, A.; St Clair, D. K.; Naumann, R. et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 2014, 20, 555–560.

    Article  Google Scholar 

  6. Sun, Q. A.; Kirnarsky, L.; Sherman, S.; Gladyshev, V. N. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. USA 2001, 98, 3673–3678.

    Article  Google Scholar 

  7. Gutscher, M.; Pauleau, A. L.; Marty, L.; Brach, T.; Wabnitz, G. H.; Samstag, Y.; Meyer, A. J.; Dick, T. P. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008, 5, 553–559.

    Article  Google Scholar 

  8. Vaughn, A. E.; Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell. Biol. 2008, 10, 1477–1483.

    Article  Google Scholar 

  9. Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 2010, 3, 23–34.

    Article  Google Scholar 

  10. Ishimoto, T.; Nagano, O.; Yae, T.; Tamada, M.; Motohara, T.; Oshima, H.; Oshima, M.; Ikeda, T.; Asaba, R.; Yagi, H. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc–and thereby promotes tumor growth. Cancer Cell 2011, 19, 387–400.

    Article  Google Scholar 

  11. Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373–380.

    Article  Google Scholar 

  12. Hassan, Z. K.; Elobeid, M. A.; Virk, P.; Omer, S. A.; ElAmin, M.; Daghestani, M. H.; AlOlayan, E. M. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev. 2012, 2012, 194829.

    Article  Google Scholar 

  13. Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.

    Article  Google Scholar 

  14. Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

    Article  Google Scholar 

  15. Lou, Z. R.; Li, P.; Han, K. L. Redox-responsive fluorescent probes with different design strategies. Acc. Chem. Res. 2015, 48, 1358–1368.

    Article  Google Scholar 

  16. Yuan, L.; Lin, W. Y.; Xie, Y. N.; Chen, B.; Zhu, S. S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J. Am. Chem. Soc. 2012, 134, 1305–1315.

    Article  Google Scholar 

  17. Yu, F. B.; Li, P.; Song, P.; Wang, B. S.; Zhao, J. Z.; Han, K. L. Facilitative functionalization of cyanine dye by an on-off-on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues. Chem. Commun. 2012, 48, 4980–4982.

    Article  Google Scholar 

  18. Guo, Z. Q.; Park, S.; Yoon, J. Y.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16–29.

    Article  Google Scholar 

  19. Koide, Y.; Kawaguchi, M.; Urano, Y.; Hanaoka, K.; Komatsu, T.; Abo, M.; Terai, T.; Nagano, T. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine. Chem. Commun. 2012, 48, 3091–3093.

    Article  Google Scholar 

  20. Yu, F. B.; Li, P.; Li, G. Y.; Zhao, G. J.; Chu, T. S.; Han, K. L. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 2011, 133, 11030–11033.

    Article  Google Scholar 

  21. Yu, F. B.; Li, P.; Wang, B. S.; Han, K. L. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J. Am. Chem. Soc. 2013, 135, 7674–7680.

    Article  Google Scholar 

  22. Li, N.; Than, A.; Sun, C. C.; Tian, J. Q.; Chen, J.; Pu, K. Y.; Dong, X. C.; Chen, P. Monitoring dynamic cellular redox homeostasis using fluorescenceswitchable graphene quantum dots. ACS Nano 2016, 10, 11475–11482.

    Article  Google Scholar 

  23. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  24. Zhang, Y. L.; Shao, X. M.; Wang, Y.; Pan, F. C.; Kang, R. X.; Peng, F. F.; Huang, Z. T.; Zhang, W. J.; Zhao, W. L. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem. Commun. 2015, 51, 4245–4248.

    Article  Google Scholar 

  25. Lim, S. Y.; Hong, K. H.; Kim, D. I.; Kwon, H.; Kim, H. J. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine. J. Am. Chem. Soc. 2014, 136, 7018–7025.

    Article  Google Scholar 

  26. Yin, J.; Kwon, Y.; Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J. H.; Yoon, J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 2014, 136, 5351–5358.

    Article  Google Scholar 

  27. Xu, K. H.; Qiang, M. M.; Gao, W.; Su, R. X.; Li, N.; Gao, Y.; Xie, Y. X.; Kong, F. P.; Tang, B. A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem. Sci. 2013, 4, 1079–1086.

    Article  Google Scholar 

  28. McMahon, B. K.; Gunnlaugsson, T. Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form using a combination of glutathione reductase and a Tb(III)-cyclen maleimide based lanthanide luminescent “switch on” assay. J. Am. Chem. Soc. 2012, 134, 10725–10728.

    Article  Google Scholar 

  29. Lou, Z. R.; Li, P.; Sun, X. F.; Yang, S. Q.; Wang, B. S.; Han, K. L. A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Chem. Commun. 2013, 49, 391–393.

    Article  Google Scholar 

  30. Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.

    Article  Google Scholar 

  31. Chu, B. B.; Song, B.; Ji, X. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular pH in live cells. Anal. Chem. 2017, 89, 12152–12159.

    Article  Google Scholar 

  32. Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 2016, 88, 9235–9242.

    Article  Google Scholar 

  33. Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

    Article  Google Scholar 

  34. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.

    Article  Google Scholar 

  35. Liu, Y.; Chen, M.; Cao, T. Y.; Sun, Y.; Li, C. Y.; Liu, Q.; Yang, T. S.; Yao, L. M.; Feng, W.; Li, F. Y. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 2013, 135, 9869–9876.

    Article  Google Scholar 

  36. Li, Z. H.; Yuan, H.; Yuan, W.; Su, Q. Q.; Li, F. Y. Upconversion nanoprobes for biodetections. Coordin. Chem. Rev. 2018, 354, 155–168.

    Article  Google Scholar 

  37. Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.

    Article  Google Scholar 

  38. Vetrone, F.; Naccache, R.; Zamarrón, A.; de la Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258.

    Article  Google Scholar 

  39. Wang, N. N.; Yu, X. Y.; Zhang, K.; Mirkin, C. A.; Li, J. S. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J. Am. Chem. Soc. 2017, 139, 12354–12357.

    Article  Google Scholar 

  40. Zhou, Y.; Pei, W. B.; Wang, C. Y.; Zhu, J. X.; Wu, J. S.; Yan, Q. Y.; Huang, L.; Huang, W.; Yao, C.; Loo, J. S. C. et al. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small 2014, 10, 3560–3567.

    Article  Google Scholar 

  41. Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multimodal in vivo imaging. Chem. Soc. Rev. 2015, 44, 1302–1317.

    Article  Google Scholar 

  42. Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

    Article  Google Scholar 

  43. Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125–3129.

    Article  Google Scholar 

  44. Ding, Q. W.; Zhan, Q. Q.; Zhou, X. M.; Zhang, T.; Xing, D. Theranostic upconversion nanobeacons for tumor mRNA ratiometric fluorescence detection and imaging-monitored drug delivery. Small 2016, 12, 5944–5953.

    Article  Google Scholar 

  45. Li, Z.; Lv, S. W.; Wang, Y. L.; Chen, S. Y.; Liu, Z. H. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J. Am. Chem. Soc. 2015, 137, 3421–3427.

    Article  Google Scholar 

  46. Yao, L. M.; Zhou, J.; Liu, J. L.; Feng, W.; Li, F. Y. Iridium-complexmodified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv. Funct. Mater. 2012, 22, 2667–2672.

    Article  Google Scholar 

  47. Liu, Q.; Peng, J. J.; Sun, L. N.; Li, F. Y. High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 2011, 5, 8040–8048.

    Article  Google Scholar 

  48. Zhou, L.; Wang, R.; Yao, C.; Li, X. M.; Wang, C. L.; Zhang, X. Y.; Xu, C. J.; Zeng, A. J.; Zhao, D. Y.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938.

    Article  Google Scholar 

  49. Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965–13969.

    Article  Google Scholar 

  50. Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048.

    Article  Google Scholar 

  51. Uhm, H.; Kang, W.; Ha, K. S.; Kang, C.; Hohng, S. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc. Natl. Acad. Sci. USA 2018, 115, 331–336.

    Article  Google Scholar 

  52. Liu, J.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701–9709.

    Article  Google Scholar 

  53. Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168–20171.

    Article  Google Scholar 

  54. Ni, J. K.; Shan, C. X.; Li, B.; Zhang, L. M.; Ma, H. P.; Luo, Y. S.; Song, H. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Chem. Commun. 2015, 51, 14054–14056.

    Article  Google Scholar 

  55. Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179–11185.

    Article  Google Scholar 

  56. Liu, Y. X.; Jia, Q.; Guo, Q. W.; Jiang, A. Q.; Zhou, J. In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Anal. Chem. 2017, 89, 12299–12305.

    Article  Google Scholar 

  57. Peng, J. J.; Samanta, A.; Zeng, X.; Han, S. Y.; Wang, L.; Su, D. D.; Loong, D. T. B.; Kang, N. Y.; Park, S. J.; All, A. H. et al. Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photonupconverting nanoprobes. Angew. Chem., Int. Ed. 2017, 56, 4165–4169.

    Article  Google Scholar 

  58. Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548–10555.

    Article  Google Scholar 

  59. Guo, Q. W.; Liu, Y. X.; Jia, Q.; Zhang, G.; Fan, H. M.; Liu, L. D.; Zhou, J. Ultrahigh sensitivity multifunctional nanoprobe for the detection of hydroxyl radical and evaluation of heavy metal induced oxidative stress in live hepatocyte. Anal. Chem. 2017, 89, 4986–4993.

    Article  Google Scholar 

  60. Harris, I. S.; Treloar, A. E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K. C.; Yung, K. Y.; Brenner, D.; Knobbe-Thomsen, C. B.; Cox, M. A. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015, 27, 211–222.

    Article  Google Scholar 

  61. Rahman, I.; MacNee, W. Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic. Biol. Med. 2000, 28, 1405–1420.

    Article  Google Scholar 

  62. Szatrowski, T. P.; Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51, 794–798.

    Google Scholar 

  63. Zhang, W. J.; Liu, T.; Huo, F. J.; Ning, P.; Meng, X. M.; Yin, C. X. Reversible ratiometric fluorescent probe for sensing bisulfate/H2O2 and its application in zebrafish. Anal. Chem. 2017, 89, 8079–8083.

    Article  Google Scholar 

  64. Jiang, X. Q.; Yu, Y.; Chen, J. W.; Zhao, M. K.; Chen, H.; Song, X. Z.; Matzuk, A. J.; Carroll, S. L.; Tan, X.; Sizovs, A. et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem. Biol. 2015, 10, 864–874.

    Article  Google Scholar 

  65. Dong, B. L.; Song, X. Z.; Kong, X. Q.; Wang, C.; Tang, Y. H.; Liu, Y.; Lin, W. Y. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium. Adv. Mater. 2016, 28, 8755–8759.

    Article  Google Scholar 

  66. Godwin, A. K.; Meister, A.; O’Dwyer, P. J.; Huang, C. S.; Hamilton, T. C.; Anderson, M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. USA 1992, 89, 3070–3074.

    Article  Google Scholar 

  67. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 2005, 4, 489–499.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21771065 and 81630046), the Natural Science Foundation of Guangdong Province, China (No. 2017A020215088), the Science and Technology Planning Project of Guangdong Province, China (Nos. 2015B020233016 and 2014B020215003), the Science and Technology Planning Project of Guangdong Province (Guangdong-Hong Kong Joint Innovation Project), China (No. 2014B050504009) Pearl River Nova Program of Guangzhou, Guangdong Province, China (No. 201806010189), and the Scientific and Technological Planning Project of Guangzhou, Guangdong Province, China (No. 201805010002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Xing or Tao Zhang.

Electronic supplementary material

12274_2019_2327_MOESM1_ESM.pdf

Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Wu, Y., Xing, D. et al. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 12, 931–938 (2019). https://doi.org/10.1007/s12274-019-2327-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2327-6

Keywords

Navigation