Skip to main content
Log in

Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect. It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs). Impressively, the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1,575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2,000 mA/g) as anode material for LIBs. This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  Google Scholar 

  2. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

    Article  Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  4. Chen, C.; Fan, Y. Q.; Gu, J. H.; Wu, L. M.; Passerini, S.; Mai, L. Q. Onedimensional nanomaterials for energy storage. J. Phys. D Appl. Phys. 2018, 51, 113002.

    Article  Google Scholar 

  5. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  6. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    Article  Google Scholar 

  7. Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

    Article  Google Scholar 

  8. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  Google Scholar 

  9. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.

    Article  Google Scholar 

  10. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

    Article  Google Scholar 

  11. Liu, J.; Wu, C.; Xiao, D. D.; Kopold, P.; Gu, L.; van Aken, P. A.; Maier, J.; Yu, Y. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 2016, 12, 2354–2364.

    Article  Google Scholar 

  12. Yu, L.; Yang, J. F.; Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem., Int. Ed. 2016, 55, 13422–13426.

    Article  Google Scholar 

  13. Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

    Article  Google Scholar 

  14. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  Google Scholar 

  15. Yu, X. Y.; Yu, L.; Lou, X. W. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333.

    Article  Google Scholar 

  16. Yu, L.; Wu, H. B.; Lou, X. W D. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.

    Google Scholar 

  17. Zhang, L.; Wu, H. B.; Lou, X. W. Metal–organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664–10672.

    Article  Google Scholar 

  18. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  Google Scholar 

  19. Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.

    Article  Google Scholar 

  20. Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 2010, 22, 347–351.

    Article  Google Scholar 

  21. Chen, H. C.; Jiang, J. J.; Zhang, L.; Qi, T.; Xia, D. D.; Wan, H. Z. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 2014, 248, 28–36.

    Article  Google Scholar 

  22. Du, W.; Liu, R. M.; Jiang, Y. W.; Lu, Q. Y.; Fan, Y. Z.; Gao. F. Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power Sources 2013, 227, 101–105.

    Article  Google Scholar 

  23. He, T. O.; Wang, W. C.; Yang, X. L.; Cao, Z. M.; Kuang, Q.; Wang, Z.; Shan, Z. W.; Jin, M. S.; Yin, Y. D. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nat. Commun. 2017, 8, 1261.

    Article  Google Scholar 

  24. Shinde, D. V.; De Trizio, L.; Dang, Z. Y.; Prato, M.; Gaspari, R.; Manna, L. Hollow and porous nickel cobalt perselenide nanostructured microparticles for enhanced electrocatalytic oxygen evolution. Chem. Mater. 2017, 29, 7032–7041.

    Article  Google Scholar 

  25. Wang, Q. F.; Ma, Y.; Wu, Y. L.; Zhang, D. H.; Miao, M. H. Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes. ChemSusChem 2017, 10, 1427–1435.

    Article  Google Scholar 

  26. Chen, H. C.; Chen, S.; Fan, M. Q.; Li, C.; Chen, D.; Tian, G. L.; Shu, K. Y. Bimetallic nickel cobalt selenides: A new kind of electroactive material for high-power energy storage. J. Mater. Chem. A 2015, 3, 23653–23659.

    Article  Google Scholar 

  27. Zhang, H. X.; Ding, Q.; He, D. H.; Liu, H.; Liu, W.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Jin, S. A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ. Sci. 2016, 9, 3113–3119.

    Article  Google Scholar 

  28. Wang, J. G.; Jin, D. D.; Zhou, R.; Shen, C.; Xie, K. Y.; Wei, B. Q. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 2016, 306, 100–106.

    Article  Google Scholar 

  29. Yu, L.; Zhang, L.; Wu, H. B.; Lou, X. W. Formation of NixCo3−xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 2014, 53, 3711–3714.

    Article  Google Scholar 

  30. Shen, L. F.; Che, Q.; Li, H. S.; Zhang, X. G. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 2014, 24, 2630–2637.

    Article  Google Scholar 

  31. Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

    Article  Google Scholar 

  32. Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847–2848.

    Article  Google Scholar 

  33. Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981–988.

    Article  Google Scholar 

  34. Zhu, S. H.; Li, Q. D.; Wei, Q. L.; Sun, R. M.; Liu, X. Q.; An, Q. Y.; Mai, L. Q. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 2016, 9, 311–316.

    Article  Google Scholar 

  35. Park, S. K.; Kim, J. K.; Kang, Y. C. Metal–organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. J. Mater. Chem. A 2017, 5, 18823–18830.

    Article  Google Scholar 

  36. Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.

    Article  Google Scholar 

  37. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  38. Wang, Y. W.; Yu, L.; Lou, X. W. Formation of triple-shelled molybdenum–polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 14668–14672.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51425204, 51521001, and 51602239), the National Key R&D Program of China (No. 2016YFA0202603), the Program of Introducing Talents of Discipline to Universities (No. B17034), the Yellow Crane Talent (Science & Technology) Program of Wuhan City, and the International Science & Technology Cooperation Program of China (No. 2013DFA50840).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinyou An or Liqiang Mai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Chen, C., He, P. et al. Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage. Nano Res. 12, 1371–1374 (2019). https://doi.org/10.1007/s12274-019-2311-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2311-1

Keywords

Navigation