Skip to main content
Log in

Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Laser-activated perfluorocarbon nanodroplets are an emerging class of phase-change, dual-contrast agents that can be utilized in ultrasound and photoacoustic imaging. Through the ability to differentiate subpopulations of nanodroplets via laser activation at different wavelengths of near-infrared light, optically-triggered color-coded perfluorocarbon nanodroplets present themselves as an attractive tool for multiplexed ultrasound and photoacoustic imaging. In particular, laser-activated droplets can be used to provide quantitative spatiotemporal information regarding distinct biological targets, allowing for their potential use in a wide range of diagnostic and therapeutic applications. In the work presented, laser-activated color-coded perfluorocarbon nanodroplets are synthesized to selectively respond to laser irradiation at corresponding wavelengths. The dynamic ultrasound and photoacoustic signals produced by laser-activated perfluorocarbon nanodroplets are evaluated in situ prior to implementation in a murine model. In vivo, these particles are used to distinguish unique particle trafficking mechanisms and are shown to provide ultrasound and photoacoustic contrast for up to 72 hours within lymphatics. Overall, the conducted studies show that laser-activated color-coded perfluorocarbon nanodroplets are a promising agent for multiplexed ultrasound and photoacoustic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, K. R.; Brown, M.; Cress, R. D.; Parise, C. A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triplenegative phenotype. Cancer 2007, 109, 1721–1728.

    Article  Google Scholar 

  2. Osborne, C. K.; Yochmowitz, M. G.; Knight, W. A.; McGuire, W. L. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980, 46, 2884–2888.

    Article  Google Scholar 

  3. La Thangue, N. B.; Kerr, D. J. Predictive biomarkers: A paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 2011, 8, 587–596.

    Article  Google Scholar 

  4. Heinzmann, K.; Carter, L. M.; Lewis, J. S.; Aboagye, E. O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng. 2017, 1, 697–713.

    Article  Google Scholar 

  5. Vendrell, M.; Maiti, K. K.; Dhaliwal, K.; Chang, Y. T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013, 31, 249–257.

    Article  Google Scholar 

  6. Ueda, S.; Saeki, T.; Osaki, A.; Yamane, T.; Kuji, I. Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: Multimodal functional imaging and multiplex cytokine analysis. Clin. Cancer Res. 2017, 23, 5769–5778.

    Article  Google Scholar 

  7. James, M. L.; Gambhir, S. S. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897–965.

    Article  Google Scholar 

  8. Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrastenhanced imaging. Nat. Commun. 2012, 3, 618.

    Article  Google Scholar 

  9. Rapoport, N. Drug-loaded perfluorocarbon nanodroplets for ultrasoundmediated drug delivery. In Therapeutic Ultrasound. Escoffre, J. M.; Bouakaz, A., Eds.; Springer: Cham, 2016; pp 221–241.

    Chapter  Google Scholar 

  10. Hannah, A. S.; Luke, G. P.; Emelianov, S. Y. Blinking phase-change nanocapsules enable background-free ultrasound imaging. Theranostics 2016, 6, 1866–1876.

    Article  Google Scholar 

  11. Luke, G. P.; Hannah, A. S.; Emelianov, S. Y. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Lett. 2016, 16, 2556–2559.

    Article  Google Scholar 

  12. Santiesteban, D. Y.; Dumani, D. S.; Profili, D.; Emelianov, S. Y. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ ultrasound imaging agents. Nano Lett. 2017, 17, 5984–5989.

    Article  Google Scholar 

  13. Sheeran, P. S.; Luois, S.; Dayton, P. A.; Matsunaga, T. O. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 2011, 27, 10412–10420.

    Article  Google Scholar 

  14. Rapoport, N.; Nam, K. H.; Gupta, R.; Gao, Z. G.; Mohan, P.; Payne, A.; Todd, N.; Liu, X.; Kim, T.; Shea, J. et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release 2011, 153, 4–15.

    Article  Google Scholar 

  15. Ji, G. J.; Yang, J. H.; Chen, J. H. Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. Int. J. Pharm. 2014, 466, 314–320.

    Article  Google Scholar 

  16. Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314.

    Article  Google Scholar 

  17. Hannah, A.; Luke, G.; Wilson, K.; Homan, K.; Emelianov, S. Indocyanine green-loaded photoacoustic nanodroplets: Dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 2013, 8, 250–259.

    Article  Google Scholar 

  18. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683–693.

    Article  Google Scholar 

  19. Coates, A. S.; Winer, E. P.; Goldhirsch, A.; Gelber, R. D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H. J.; Members, P.; André, F. et al. Tailoring therapies—Improving the management of early breast cancer: St gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 2015, 26, 1533–1546.

    Article  Google Scholar 

  20. Chollet, P.; Amat, S.; Cure, H.; de Latour, M.; Le Bouedec, G.; Mouret-Reynier, M. A.; Ferriere, J. P.; Achard, J. L.; Dauplat, J.; Penault-Llorca, F. et al. Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer. Br. J. Cancer 2002, 86, 1041–1046.

    Article  Google Scholar 

  21. Moghimi, S. M.; Hunter, A. C.; Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481–503.

    Article  Google Scholar 

  22. Li, D. S.; Yoon, S. J.; Pelivanov, I.; Frenz, M.; O’Donnell, M.; Pozzo, L. D. Polypyrrole-coated perfluorocarbon nanoemulsions as a sono-photoacoustic contrast agent. Nano Lett. 2017, 17, 6184–6194.

    Article  Google Scholar 

  23. Yoon, H.; Yarmoska, S. K.; Hannah, A. S.; Yoon, C.; Hallam, K. A.; Emelianov, S. Y. Contrast-enhanced ultrasound imaging in vivo with laseractivated nanodroplets. Med. Phys. 2017, 44, 3444–3449.

    Article  Google Scholar 

  24. Marshalek, J. P.; Sheeran, P. S.; Ingram, P.; Dayton, P. A.; Witte, R. S.; Matsunaga, T. O. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J. Control. Release 2016, 243, 69–77.

    Article  Google Scholar 

  25. Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145–6153.

    Article  Google Scholar 

  26. Song, G. S.; Ji, C. H.; Liang, C.; Song, X. J.; Yi, X.; Dong, Z. L.; Yang, K.; Liu, Z. TaOX decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2017, 112, 257–263.

    Article  Google Scholar 

  27. Albertini, J. J.; Lyman, G. H.; Cox, C.; Yeatman, T.; Balducci, L.; Ku, N. N.; Shivers, S.; Berman, C.; Wells, K.; Rapaport, D. et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996, 276, 1818–1822.

    Article  Google Scholar 

  28. Krag, D. N.; Weaver, D. L.; Alex, J. C.; Fairbank, J. T. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg. Oncol. 1993, 2, 335–340.

    Article  Google Scholar 

  29. Thomas, S. N.; Vokali, E.; Lund, A. W.; Hubbell, J. A.; Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014, 35, 814–824.

    Article  Google Scholar 

  30. Leleux, J.; Atalis, A.; Roy, K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J. Control. Release 2015, 219, 610–621.

    Article  Google Scholar 

  31. Kowala, M. C.; Schoefl, G. I. The popliteal lymph node of the mouse: Internal architecture, vascular distribution and lymphatic supply. J. Anat. 1986, 148, 25–46.

    Google Scholar 

  32. Rohner, N. A.; Thomas, S. N. Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomater. Sci. Eng. 2017, 3, 153–159.

    Article  Google Scholar 

  33. Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M. F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413.

    Article  Google Scholar 

  34. Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 2006, 112, 26–34.

    Article  Google Scholar 

  35. Kushwah, R.; Hu, J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology 2011, 133, 409–419.

    Article  Google Scholar 

  36. Liang, R. J.; Xie, J.; Li, J.; Wang, K.; Liu, L. P.; Gao, Y. J.; Hussain, M.; Shen, G. X.; Zhu, J. T.; Tao, J. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 2017, 149, 41–50.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Diego Dumani of the Georgia Institute of Technology for his insight into background free image processing algorithm development. D. Y. S. acknowledges fellowship funding from the National Institutes of Health (No. T32 EB007507) and the National Science Foundation Graduate Research Fellowship Program. K. A. H. acknowledges fellowship funding from the National Institutes of Health (No. T32 EB007507). S. K. Y. acknowledges fellowship funding from the National Institutes of Health (No. F30 CA216939). The work was supported in part by the National Institutes of Health under Grants CA158598, EB008101 and CA149740 as well as the Breast Cancer Research Foundation Grant (No. BCRF-17-043). We also wish to acknowledge the core facilities at the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology for the use of their shared equipment, services, and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Y. Emelianov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiesteban, D.Y., Hallam, K.A., Yarmoska, S.K. et al. Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging. Nano Res. 12, 741–747 (2019). https://doi.org/10.1007/s12274-019-2279-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2279-x

Keywords

Navigation