Skip to main content
Log in

Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes

Nano Research Aims and scope Submit manuscript

Abstract

Iron sulfides have been considered as one of the most promising candidates for sodium ion battery anode materials due to their high theoretical capacity and low cost. In this work, spindle-like Fe7S8 with nitrogen-doped carbon (Fe7S8/N-C) nanohybrids are successfully synthesized via a solvothermal method by sulfidation iron-based metal organic framework (FeMOF). As sodium ion battery anodes, Fe7S8/N-C nanohybrids exhibit high reversible capacity of 450.8 mAh·g−1 at 200 mA·g−1, and 406.7 mAh·g−1 at 500 mA·g−1 even after 500 cycles. They also show excellent rate properties and delivering the capacity of 327.8 mAh·g−1 at a very high current density of 3.2 A·g−1. These outstanding electrochemical performances can be attributed to the unique structure of Fe7S8/N-C nanohybrids. The nanoscale dimension in their size can be beneficial for facile ion and electron transports. Furthermore, the stable nitrogen doped carbon frameworks can also improve electrical conductivity and relieve the problems related to volume expansion. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy analyses have been performed to study reactions occurred in spindle-like Fe7S8/N-C nanohybrid electrode at both bulk and surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  3. Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146–2172.

    Article  Google Scholar 

  4. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    Article  Google Scholar 

  5. Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751.

    Article  Google Scholar 

  6. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  7. Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604–1612.

    Article  Google Scholar 

  8. Kim, M. K.; Yu, S. H.; Jin, A. H.; Kim, J.; Ko, I. H.; Lee, K. S.; Mun, J.; Sung, Y. E. Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chem. Commun. 2016, 52, 11775–11778.

    Article  Google Scholar 

  9. Quan, B.; Jin, A. H.; Yu, S. H.; Kang, S. M.; Jeong, J.; Abruña, H. D.; Jin, L. Y.; Piao, Y. Z.; Sung, Y. E. Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries. Adv. Sci. 2018, 5, 1700880.

    Article  Google Scholar 

  10. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  11. Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

    Article  Google Scholar 

  12. Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

    Article  Google Scholar 

  13. Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.

    Article  Google Scholar 

  14. Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

    Article  Google Scholar 

  15. Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.

    Article  Google Scholar 

  16. Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.

    Article  Google Scholar 

  17. Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821–8828.

    Article  Google Scholar 

  18. Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.

    Article  Google Scholar 

  19. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Layered SnS2reduced graphene oxide composite–a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  20. Peng, S. J.; Han, X. P.; Li, L. L.; Zhu, Z. Q.; Cheng, F. Y.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359–1368.

    Article  Google Scholar 

  21. Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.

    Article  Google Scholar 

  22. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822–12826.

    Article  Google Scholar 

  23. Douglas, A.; Carter, R.; Oakes, L.; Share, K.; Cohn, A. P.; Pint, C. L. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 2015, 9, 11156–11165.

    Article  Google Scholar 

  24. Walter, M.; Zünd, T.; Kovalenko, M. V. Pyrite (FeS2) Nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 2015, 7, 9158–9163.

    Article  Google Scholar 

  25. Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.

    Article  Google Scholar 

  26. Shi, L. D.; Yu, J. L.; Liu, H. C.; Zhao, Y.; Xin, H. L.; Lin, Y. M.; Lin, C. D.; Li, C. H.; Zhu, C. Z. Uniform core-shell nanobiscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J. Mater. Chem. A 2018, 6, 7967–7976.

    Article  Google Scholar 

  27. Xiao, Y.; Hwang, J. Y.; Belharouak, I.; Sun, Y. K. Na storage capability investigation of a carbon nanotube-encapsulated Fe1-xS composite. ACS Energy Lett. 2017, 2, 364–372.

    Article  Google Scholar 

  28. Wu, Z. G.; Li, J. T.; Zhong, Y. J.; Liu, J.; Wang, K.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compd. 2016, 688, 790–797.

    Article  Google Scholar 

  29. Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164.

    Article  Google Scholar 

  30. Choi, M. J.; Kim, J.; Yoo, J. K.; Yim, S.; Jeon, J.; Jung, Y. S. Extremely small pyrrhotite Fe7S8 nanocrystals with simultaneous carbon-encapsulation for high-performance Na-ion batteries. Small 2018, 14, 1702816.

    Article  Google Scholar 

  31. Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365.

    Article  Google Scholar 

  32. Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to sizecontrolled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.

    Article  Google Scholar 

  33. Tan, Y. Z.; Wong, K. W.; Zhang, Z. L.; Ng, K. M. In situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion batteries. Nanoscale 2017, 9, 19408–19414.

    Article  Google Scholar 

  34. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  35. Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Férey, G. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 2006, 284–286.

    Google Scholar 

  36. Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557–563.

    Article  Google Scholar 

  37. Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902–909.

    Article  Google Scholar 

  38. Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

    Article  Google Scholar 

  39. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.

    Article  Google Scholar 

  40. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

    Article  Google Scholar 

  41. Chen, S. C.; Kang, Z. X.; Zhang, X. D.; Xie, J. F.; Wang, H.; Shao, W.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electro-catalytic oxygen evolution. ACS Cent. Sci. 2017, 3, 1221–1227.

    Article  Google Scholar 

  42. Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827–841.

    Article  Google Scholar 

  43. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  Google Scholar 

  44. Zhou, J. G.; Wang, J.; Sun, C. L.; Maley, J. M.; Sammynaiken, R.; Sham, T. K.; Pong, W. F. Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J. Mater. Chem. 2011, 21, 14622–14630.

    Article  Google Scholar 

  45. Ehlert, C.; Unger, W. E. S.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: A study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083–14095.

    Article  Google Scholar 

  46. Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. A. Electronic structure of N-doped graphene with native point defects. Phys. Rev. B 2013, 87, 165401.

    Article  Google Scholar 

  47. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  Google Scholar 

  48. Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

    Article  Google Scholar 

  49. Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.

    Article  Google Scholar 

  50. Muthiah, A.; Baikie, T.; Shukla, S.; Ball, S.; Copley, M.; Hyde, T. I.; Du, Y. H.; Sankar, G.; Aravindan, V.; Srinivasan, M. Ex situ XAS investigation of effect of binders on electrochemical performance of Li2Fe(SO4)2 cathode. J. Mater. Chem. A 2017, 5, 19963–19971.

    Article  Google Scholar 

  51. Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 2015, 273, 14–24.

    Article  Google Scholar 

  52. Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.

    Article  Google Scholar 

  53. Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.

    Article  Google Scholar 

  54. Song, J. H.; Xiao, B. W.; Lin, Y. H.; Xu, K.; Li, X. L. Interphases in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703082.

    Article  Google Scholar 

  55. Muñoz-Márquez, M. A.; Zarrabeitia, M.; Castillo-Martínez, E.; Eguía-Barrio, A.; Rojo, T.; Casas-Cabanas, M. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. ACS Appl. Mater. Interfaces 2015, 7, 7801–7808.

    Article  Google Scholar 

  56. Vogt, L. O.; El Kazzi, M.; Jämstorp Berg, E.; Pérez Villar, S.; Novák, P.; Villevieille, C. Understanding the interaction of the carbonates and binder in Na-ion batteries: A combined bulk and surface study. Chem. Mater. 2015, 27, 1210–1216.

    Article  Google Scholar 

  57. Jaumann, T.; Balach, J.; Klose, M.; Oswald, S.; Langklotz, U.; Michaelis, A.; Eckert, J.; Giebeler, L. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders. Phys. Chem. Chem. Phys. 2015, 17, 24956–24967.

    Article  Google Scholar 

  58. Oltean, V. A.; Philippe, B.; Renault, S.; Duarte, R. F.; Rensmo, H.; Brandell, D. Investigating the interfacial chemistry of organic electrodes in Li-and Na-ion batteries. Chem. Mater. 2016, 28, 8742–8751.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Institute for Basic Science (IBS) in Korea and Y.-E. S. acknowledges the financial support by IBS-R006-A2. K. S. L. acknowledges the support by Nano-Material Fundamental Technology Development program (NRF-2018R1D1A1B07041997) through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Ho Yu or Yung-Eun Sung.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, A., Kim, MJ., Lee, KS. et al. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 12, 695–700 (2019). https://doi.org/10.1007/s12274-019-2278-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2278-y

Keywords

Navigation