Skip to main content
Log in

Insight of surface treatments for CMOS compatibility of InAs nanowires

Nano Research Aims and scope Submit manuscript

Abstract

A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic annealing prior to growth. Morphological and structural characterizations of the InAs nanowires are presented and growth mechanisms are discussed in detail. The major influence of surface termination is exposed both experimentally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of InAs nanowires can be explained by these different surfaces terminations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nanowires (up to 50 nm in diameter and 3 micron in length) without passing the 410 °C thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface terminations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomioka, K.; Yoshimura, M.; Fukui, T. Sub 60 mV/decade switch using an InAs nanowire-Si heterojunction and turn-on voltage shift with a pulsed doping technique. Nano Lett. 2013, 13, 5822–5826.

    Article  Google Scholar 

  2. Kanungo, P. D.; Schmid, H.; Björk, M. T.; Gignac, L. M.; Breslin, C.; Bruley, J.; Bessire, C. D.; Riel, H. Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: Towards monolithic integration of nano-devices. Nanotechnology 2013, 24, 225304.

    Article  Google Scholar 

  3. Lee, K. H.; Wang, Y.; Wang, B.; Zhang, L.; Sasangka, W. A.; Goh, S. C.; Bao, S. Y.; Lee, K. E.; Fitzgerald, E. A.; Tan, C. S. Monolithic integration of Si-CMOS and III-V-on-Si through direct wafer bonding process. IEEE J. Electron Devices Soc. 2017, 6, 571–578.

    Article  Google Scholar 

  4. Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28–35.

    Article  Google Scholar 

  5. Renard, V. T.; Jublot, M.; Gergaud, P.; Cherns, P.; Rouchon, D.; Chabli, A.; Jousseaume, V. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nat. Nanotechnol. 2009, 4, 654–657.

    Article  Google Scholar 

  6. Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 2008, 92, 063112.

    Article  Google Scholar 

  7. Dayeh, S. A.; Yu, E. T.; Wang, D. Surface diffusion and substrate-nanowire adatom exchange in InAs nanowire growth. Nano Lett. 2009, 9, 1967–1972.

    Article  Google Scholar 

  8. Plissard, S.; Larrieu, G.; Wallart, X.; Caroff, P. High yield of self-catalyzed gaas nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 2011, 22, 275602.

    Article  Google Scholar 

  9. Koblmüller, G.; Hertenberger, S.; Vizbaras, K.; Bichler, M.; Bao, F.; Zhang, J. P.; Abstreiter, G. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy. Nanotechnology 2010, 21, 365602.

    Article  Google Scholar 

  10. Caroff, P.; Messing, M. E.; Mattias Borg, B.; Dick, K. A; Deppert, K.; Wernersson, L. E. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 2009, 20, 495606.

    Article  Google Scholar 

  11. Plissard, S. R.; Slapak, D. R.; Verheijen, M. A.; Hocevar, M.; Immink, G. W. G.; Van Weperen, I.; Nadj-Perge, S.; Frolov, S. M.; Kouwenhoven, L. P.; Bakkers, E. P. A. M. From InSb nanowires to nanocubes: Looking for the sweet spot. Nano Lett. 2012, 12, 1794–1798.

    Article  Google Scholar 

  12. Thelander, C.; Caroff, P.; Plissard, S.; Dick, K. A. Electrical properties of InAs1-xSbx and InSb nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2012, 100, 232105.

    Article  Google Scholar 

  13. Cirlin, G. E.; Dubrovskii, V. G.; Samsonenko, Y. B.; Bouravleuv, A. D.; Durose, K.; Proskuryakov, Y. Y.; Mendes, B.; Bowen, L.; Kaliteevski, M. A.; Abram, R. A. et al. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys. Rev. B 2010, 82, 035302.

    Article  Google Scholar 

  14. Krogstrup, P.; Popovitz-Biro, R.; Johnson, E.; Madsen, M. H.; Nygård, J.; Shtrikman, H. Structural phase control in self-catalyzed growth of GaAs nanowires on Silicon (111). Nano Lett. 2010, 10, 4475–4482.

    Article  Google Scholar 

  15. Plissard, S.; Dick, K. A; Larrieu, G.; Godey, S.; Addad, A.; Wallart, X.; Caroff, P. Gold-free growth of GaAs nanowires on silicon: Arrays and polytypism. Nanotechnology 2010, 21, 385602.

    Article  Google Scholar 

  16. Priante, G.; Ambrosini, S.; Dubrovskii, V. G.; Franciosi, A.; Rubini, S. Stopping and resuming at will the growth of GaAs nanowires. Cryst. Growth Des. 2013, 13, 3976–3984.

    Article  Google Scholar 

  17. Somaschini, C.; Bietti, S.; Trampert, A.; Jahn, U.; Hauswald, C.; Riechert, H.; Sanguinetti, S.; Geelhaar, L. Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy. Nano Lett. 2013, 13, 3607–3613.

    Article  Google Scholar 

  18. Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960–966.

    Article  Google Scholar 

  19. Russo-Averchi, E.; Vukajlovic Plestina, J.; Tütüncüoglu, G.; Matteini, F.; Dalmau-Mallorquí, A.; de la Mata, M.; Rüffer, D.; Potts, H. A.; Arbiol, J.; Conesa-Boj, S. et al. High yield of GaAs nanowire arrays on Si mediated by the pinning and contact angle of Ga. Nano Lett. 2015, 15, 2869–2874.

    Article  Google Scholar 

  20. Hertenberger, S.; Rudolph, D.; Becker, J.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability. Nanotechnology 2012, 23, 235602.

    Article  Google Scholar 

  21. Ermez, S.; Jones, E. J.; Crawford, S. C.; Gradecak, S. Self-seeded growth of GaAs nanowires by metal–organic chemical vapor deposition. Cryst. Growth Des. 2015, 15, 2768–2774.

    Article  Google Scholar 

  22. Tomioka, K.; Motohisa, J.; Hara, S.; Fukui, T. Control of InAs nanowire growth directions on Si. Nano Lett. 2008, 8, 3475–3480.

    Article  Google Scholar 

  23. Kriegner, D.; Wintersberger, E.; Kawaguchi, K.; Wallentin, J.; Borgström, M. T.; Stangl, J. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction. Nanotechnology 2011, 22, 425704.

    Article  Google Scholar 

  24. Li, T. F.; Chen, Y. H.; Lei, W.; Zhou, X. L.; Luo, S.; Hu, Y. Z.; Wang, L. J.; Yang, T.; Wang, Z.G. Effect of growth temperature on the morphology and phonon properties of InAs nanowires on Si substrates. Nanoscale Res. Lett. 2011, 6, 463.

    Article  Google Scholar 

  25. Wang, X. Y.; Yang, X. G.; Du, W. N.; Ji, H. M.; Luo, S.; Yang, T. Thickness influence of thermal oxide layers on the formation of self-catalyzed InAs nanowires on Si(111) by MOCVD. J. Cryst. Growth 2014, 395, 55–60.

    Article  Google Scholar 

  26. Shi, T. W.; Wang, X. Y.; Wang, B. J.; Wang, W.; Yang, X. G.; Yang, W. Y.; Chen, Q.; Xu, H. Q.; Xu, S. Y.; Yang, T. Nanoscale opening fabrication on Si (111) surface from SiO2 Barrier for vertical growth of III-V nanowire arrays. Nanotechnology 2015, 26, 265302.

    Article  Google Scholar 

  27. Gomes, U. P.; Ercolani, D.; Sibirev, N. V; Gemmi, M.; Dubrovskii, V. G.; Beltram, F.; Sorba, L. Catalyst-free growth of InAs nanowires on Si (111) by CBE. Nanotechnology 2015, 26, 415604.

    Article  Google Scholar 

  28. Tomioka, K.; Fukui, T. Tunnel field-effect transistor using InAs nanowire/si heterojunction. Appl. Phys. Lett. 2011, 98, 083114.

    Article  Google Scholar 

  29. Tomioka, K.; Yoshimura, M.; Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.

    Article  Google Scholar 

  30. Hertenberger, S.; Rudolph, D.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 2010, 108, 114316.

    Article  Google Scholar 

  31. Matteini, F.; Tütüncüoglu, G.; Rüffer, D.; Alarcón-Lladó, E.; Fontcuberta i Morral, A. Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature. J. Cryst. Growth 2014, 404, 246–255.

    Article  Google Scholar 

  32. Wang, X. Y.; Yang, W. Y.; Wang, B. J.; Ji, X. H.; Xu, S. Y.; Wang, W.; Chen, Q.; Yang, T. Effect of nanohole size on selective area growth of InAs nanowire arrays on Si substrates. J. Cryst. Growth 2017, 60, 1–4.

    Google Scholar 

  33. Kriegner, D.; Panse, C.; Mandl, B.; Dick, K. A.; Keplinger, M.; Persson, J. M.; Caroff, P.; Ercolani, D.; Sorba, L.; Bechstedt, F. et al. Unit cell structure of crystal polytypes in InAs and InSb nanowires. Nano Lett. 2011, 11, 1483–1489.

    Article  Google Scholar 

  34. Strain++ [Online]. 2015. http://jjppeters.github.io/Strainpp/(accessed Mar 10, 2018).

  35. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.

    Article  Google Scholar 

  36. Tomioka, K.; Izhizaka, F.; Fukui, T. Selective-area growth of InAs nanowires on Ge and vertical transistor application. Nano Lett. 2015, 15, 7253–7257.

    Article  Google Scholar 

  37. Mandl, B.; Dey, A. W.; Stangl, J.; Cantoro, M.; Wernersson, L. E.; Bauer, G.; Samuelson, L.; Deppert, K.; Thelander, C. Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study. J. Cryst. Growth 2011, 334, 51–56.

    Article  Google Scholar 

  38. Liu, B. D.; Yang, B.; Yuan, F.; Liu, Q. Y.; Shi, D.; Jiang, C. H.; Zhang, J. S.; Staedler, T.; Jiang, X. Defect-induced nucleation and epitaxy: A new strategy toward the rational synthesis of WZ-GaN/3C-SiC core-shell heterostructures. Nano Lett. 2015, 15, 7837–7846.

    Article  Google Scholar 

  39. Gomes, U. P.; Ercolani, D.; Zannier, V.; Battiato, S.; Ubyivovk, E.; Mikhailovskii, V.; Murata, Y.; Heun, S.; Beltram, F.; Sorba, L. Heterogeneous nucleation of catalyst-free InAs nanowires on silicon. Nanotechnology 2017, 28, 065603.

    Article  Google Scholar 

  40. Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat. Nanotechnol. 2009, 4, 50–55.

    Article  Google Scholar 

  41. Li, X.; Wei, X. L.; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.; Chen, Q. Mechanical properties of individual InAs nanowires studied by tensile tests. Appl. Phys. Lett. 2014, 104, 103110.

    Article  Google Scholar 

  42. Choi, S.; Lee, J. H.; Pin, M. W.; Jang, D. W.; Hong, S. G.; Cho, B.; Lee, S. J.; Jeong, J. S.; Yi, S. H.; Kim, Y. H. Study on fracture behavior of individual InAs nanowires using an electron-beam-drilled notch. RSC Adv. 2017, 7, 16655–16661.

    Article  Google Scholar 

  43. Yasaka, T.; Kanda, K.; Sawara, K.; Miyazaki, S.; Hirose, M. Chemical stability of HF-treated SI(111) surfaces. Jpn. J. Appl. Phys. 1991, 30, 3567–3569.

    Article  Google Scholar 

  44. Olmstead, M. A.; Bringans, R. D.; Uhrberg, R. I. G.; Bachrach, R. Z. Arsenic overlayer on Si(111): Removal of surface reconstruction. Phys. Rev. B 1986, 34, 6041–6044.

    Article  Google Scholar 

  45. Becker, R. S.; Klitsner, T.; Vickers, J. S. Arsenic-terminated silicon and germanium surfaces studied by scanning tunnelling microscopy. J. Microsc. 1988, 152, 157–165.

    Article  Google Scholar 

  46. Patel, J. R.; Golovchenko, J. A.; Freeland, P. E.; Gossmann, H. J. Arsenic atom location on passivated silicon (111) surfaces. Phys. Rev. B 1987, 36, 7715(R)–7717(R).

    Article  Google Scholar 

  47. Cheng, C.; Kunc, K. Arsenic adatom structures for Ge(111) and Si(111) surfaces: First-principles calculations. Surf. Sci. 1996, 365, 383–393.

    Article  Google Scholar 

  48. Patterson, C. H.; Messmer, R. P. Structural compromise of the arsenicterminated silicon (111) surface. Phys. Rev. B 1989, 39, 1372–1374.

    Article  Google Scholar 

  49. Gao, Q.; Dubrovskii, V. G.; Caroff, P.; Wong-Leung, J.; Li, L.; Guo, Y. N.; Fu, L.; Tan, H. H.; Jagadish, C. Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 2016, 16, 4361–4367.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Bergaud and E. Scheid for fruitful discussions on the mechanical properties of InAs NWs. This study was supported by LAAS-CNRS micro and nanotechnologies platform member of the French RENATECH network. Simulations have been performed using CALMIP (GRANT 1418) computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien R. Plissard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhungana, D.S., Hemeryck, A., Sartori, N. et al. Insight of surface treatments for CMOS compatibility of InAs nanowires. Nano Res. 12, 581–586 (2019). https://doi.org/10.1007/s12274-018-2257-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2257-8

Keywords

Navigation