Skip to main content
Log in

Doping modulated in-plane anisotropic Raman enhancement on layered ReS2

Nano Research Aims and scope Submit manuscript

Abstract

Anisotropic two-dimensional (2D) materials exhibit lattice-orientation dependent optical and electrical properties. Carriers doping of such materials has been used to modulate their energy band structures for opto-electronic applications. Herein, we show that by stacking monolayer rhenium disulfide (ReS2) on a flat gold film, the electrons doping in ReS2 can affect the in-plane anisotropic Raman enhancement of molecules adsorbed on ReS2. The change of enhancement factor and the degree of anisotropy in enhancement with layer number are sensitively dependent on the doping level of ReS2 by gold, which is further confirmed by Kelvin probe force microscopy (KPFM) measurements. These findings could open an avenue for probing anisotropic electronic interactions between molecules and 2D materials with low symmetry using Raman enhancement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  2. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  Google Scholar 

  3. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

    Article  Google Scholar 

  4. Shi, G. S.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926–6931.

    Article  Google Scholar 

  5. Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.

    Article  Google Scholar 

  6. Ho, C. H.; Huang, Y.S.; Tiong, K. K.; Liao, P. C. In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals. J. Phys.: Condens. Matter 1999, 11, 5367–5375.

    Google Scholar 

  7. Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

    Article  Google Scholar 

  8. Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.

    Article  Google Scholar 

  9. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  Google Scholar 

  10. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  Google Scholar 

  11. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  Google Scholar 

  12. Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

    Article  Google Scholar 

  13. Huang, S. X.; Tatsumi, Y.; Ling, X.; Guo, H. H.; Wang, Z. Q.; Watson, G.; Puretzky, A. A.; Geohegan, D. B.; Kong, J.; Li, J. et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano 2016, 10, 8964–8972.

    Article  Google Scholar 

  14. Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219–2226.

    Article  Google Scholar 

  15. Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.

    Article  Google Scholar 

  16. Aslan, O. B.; Chenet, D. A.; van der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 2016, 3, 96–101.

    Article  Google Scholar 

  17. Zhang, S. S.; Zhang, N.; Zhao, Y.; Cheng, T.; Li, X. B.; Feng, R.; Xu, H.; Liu, Z. R.; Zhang, J.; Tong, L. M. Spotting the differences in two-dimensional materials-the Raman scattering perspective. Chem. Soc. Rev. 2018, 47, 3380.

    Article  Google Scholar 

  18. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 127, 2396–2399.

    Article  Google Scholar 

  19. Mao, N. N.; Zhang, S. Q.; Wu, J. X.; Zhang, J.; Tong, L. M. Lattice vibration and Raman scattering in anisotropic black phosphorus crystals. Small Methods 2018, 2, 1700409.

    Article  Google Scholar 

  20. Qiao, X. F.; Wu, J. B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324–8332.

    Article  Google Scholar 

  21. Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.

    Article  Google Scholar 

  22. Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.

    Article  Google Scholar 

  23. Yang, Y. S.; Liu, S. C.; Yang, W.; Li, Z. B.; Wang, Y.; Wang, X.; Zhang, S. S.; Zhang, Y.; Long, M. S.; Zhang, G. M. et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150–4156.

    Article  Google Scholar 

  24. Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

    Article  Google Scholar 

  25. Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.

    Article  Google Scholar 

  26. Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

    Article  Google Scholar 

  27. Li, X. B.; Cui, F. F.; Feng, Q. T.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.

    Article  Google Scholar 

  28. Friemelt, K.; Lux-Steiner, M. C.; Bucher, E. Optical properties of the layered transition-metal-dichalcogenide ReS2: Anisotropy in the van der Waals plane. J. Appl. Phys. 1993, 74, 5266–5268.

    Article  Google Scholar 

  29. Ho, C. H.; Huang, Y. S.; Tiong, K. K. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloy. Compd. 2001, 317–318, 222–226.

    Article  Google Scholar 

  30. Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249–11257.

    Article  Google Scholar 

  31. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Öezyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    Article  Google Scholar 

  32. Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

    Article  Google Scholar 

  33. Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

    Article  Google Scholar 

  34. Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

    Article  Google Scholar 

  35. Lin, J. J.; Liang, L. B.; Ling, X.; Zhang, S. Q.; Mao, N. N.; Zhang, N.; Sumpter, B. G.; Meunier, V.; Tong, L. M.; Zhang, J. Enhanced Raman scattering on in-plane anisotropic layered materials. J. Am. Chem. Soc. 2015, 137, 15511–15517.

    Article  Google Scholar 

  36. Miao, P.; Qin, J. K.; Shen, Y. F.; Su, H. M.; Dai, J. F.; Song, B.; Du, Y. C.; Sun, M. T.; Zhang, W.; Wang, H. L. et al. Unraveling the Raman enhancement mechanism on 1T′-phase ReS2 nanosheets. Small 2018, 14, 1704079.

    Article  Google Scholar 

  37. Çakir, D.; Sahin, H.; Peeters, F. M. Doping of rhenium disulfide monolayers: A systematic first principles study. Phys. Chem. Chem. Phys. 2014, 16, 16771–16779.

    Article  Google Scholar 

  38. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.

    Article  Google Scholar 

  39. Qin, J. K.; Shao, W. Z.; Xu, C. Y.; Li, Y.; Ren, D. D.; Song, X. G.; Zhen, L. Chemical vapor deposition growth of degenerate p-type mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Interfaces 2017, 9, 15583–15591.

    Article  Google Scholar 

  40. Jing, Y.; Tang, Q.; He, P.; Zhou, Z.; Shen, P. W. Small molecules make big differences: Molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 2015, 26, 095201.

    Article  Google Scholar 

  41. Shim, J.; Oh, S.; Kang, D. H.; Jo, S. H.; Ali, M. H.; Choi, W. Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M. et al. Phosphorene/rhenium disulfide heterojunctionbased negative differential resistance device for multi-valued logic. Nat. Commun. 2016, 7, 13413.

    Article  Google Scholar 

  42. Yang, Z. B.; Hao, J. H. Recent progress in black-phosphorus-based heterostructures for device applications. Small Methods 2018, 2, 1700296.

    Article  Google Scholar 

  43. Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

    Article  Google Scholar 

  44. Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

    Article  Google Scholar 

  45. Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

    Article  Google Scholar 

  46. Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono-and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

    Article  Google Scholar 

  47. Basova, T. V.; Kolesov, B. A. Raman spectra of copper phthalocyanin: Experiment and calculation. J. Struct. Chem. 2000, 41, 770–777.

    Article  Google Scholar 

  48. Liu, Z. Q.; Zhang, X. X.; Zhang, Y. X.; Jiang, J. H. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2007, 67, 1232–1246.

    Article  Google Scholar 

  49. Basova, T. V.; Kiselev, V. G.; Schuster, B. E.; Peisert, H.; Chassé, T. Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: Polarized single-crystal Raman spectra, isotope effect and DFT calculations. J. Raman Spectrosc. 2009, 40, 2080–2087.

    Article  Google Scholar 

  50. Barros, E. B.; Dresselhaus, M. S. Theory of Raman enhancement by twodimensional materials: Applications for graphene-enhanced Raman spectroscopy. Phys. Rev. B 2014, 90, 035443.

    Article  Google Scholar 

  51. Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.

    Article  Google Scholar 

  52. Hegner, M.; Wagner, P.; Semenza, G. Ultralarge atomically flat templatestripped Au surfaces for scanning probe microscopy. Surf. Sci. 1993, 291, 39–46.

    Article  Google Scholar 

  53. Schatz, G. C.; Young, M. A.; van Duyne, R. P. Electromagnetic mechanism of SERS. In Surface-Enhanced Raman Scattering: Physics and Applications. Kneipp, K.; Moskovits, M.; Kneipp, H., Eds.; Springer: Berlin, Heidelberg, 2006; pp 19–45.

    Chapter  Google Scholar 

  54. Feng, Y. Q.; Zhou, W.; Wang, Y. J.; Zhou, J.; Liu, E. F.; Fu, Y. J.; Ni, Z. H.; Wu, X. L.; Yuan, H. T.; Miao, F. et al. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B 2015, 92, 054110.

    Article  Google Scholar 

  55. Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

    Article  Google Scholar 

  56. McCreary, A.; Simpson, J. R.; Wang, Y. X.; Rhodes, D.; Fujisawa, K.; Balicas, L.; Dubey, M.; Crespi, V. H.; Terrones, M.; Walker, A. R. H. Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 2017, 17, 5897–5907.

    Article  Google Scholar 

  57. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

    Article  Google Scholar 

  58. Takahashi, T.; Tokailin, H.; Sagawa, T. Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 1985, 32, 8317–8324.

    Article  Google Scholar 

  59. Park, J. Y.; Joe, H. E.; Yoon, H. S.; Yoo, S.; Kim, T.; Kang, K.; Min, B. K.; Jun, S. C. Contact effect of ReS2/metal interface. ACS Appl. Mater. Interfaces 2017, 9, 26325–26332.

    Article  Google Scholar 

  60. Rivière, J. C. The work function of gold. Appl. Phys. Lett. 1966, 8, 172.

    Article  Google Scholar 

  61. Cui, X. D.; Freitag, M.; Martel, R.; Brus, L.; Avouris, P. Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 2003, 3, 783–787.

    Article  Google Scholar 

  62. Chu, C. W.; Shrotriya, V.; Li, G.; Yang, Y. Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells. Appl. Phys. Lett. 2006, 88, 153504.

    Article  Google Scholar 

  63. Jung, N.; Kim, N.; Jockusch, S.; Turro, N. J.; Kim, P.; Brus, L. Charge transfer chemical doping of few layer graphenes: Charge distribution and band gap formation. Nano Lett. 2009, 9, 4133–4137.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Guan and B. Ma for the vacuum thermal deposition, L. Sun for providing the graphene sample, and S. Jiang for the CVD-grown ReS2 sample. This work was supported by the National Natural Science Foundation of China (Nos. 51432002, 51720105003, 21790052, 11374355 and 21573004), the Ministry of Science and Technology of China (Nos. 2016YFA0200100 and 2015CB932400), and the Beijing Municipal Science and Technology Project (No. Z161100002116026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianming Tong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Lin, J., Zhang, S. et al. Doping modulated in-plane anisotropic Raman enhancement on layered ReS2. Nano Res. 12, 563–568 (2019). https://doi.org/10.1007/s12274-018-2254-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2254-y

Keywords

Navigation