Skip to main content
Log in

Panorama of boron nitride nanostructures via lamp ablation

Nano Research Aims and scope Submit manuscript

Abstract

A diverse range of remarkable boron nitride (BN) nanostructures subsuming nano-horns, nano-rods, nano-platelets, and clusters of hollow nanospheres (nano-onions, arguably of greatest applied and fundamental interest) have been produced exclusively from crystalline BN precursor powder via lamp ablation. The procedure is safe, devoid of toxic reagents, simple, rapid and scalable—generating some genres of nanoparticles that had previously proved elusive. Product structure and composition were unambiguously assessed by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Zunger, A.; Katzir, A.; Halperin, A. Optical properties of hexagonal boron nitride. Phys. Rev. B 1976, 13, 5560–5573.

    Article  Google Scholar 

  2. Kho, J. G.; Moon, K. T.; Kim, J. H.; Kim, D. P. Properties of boron nitride (BxNy) films produced by the spin-coating process of polyborazine. J. Am. Chem. Soc. 2000, 83, 2681–2683.

    Google Scholar 

  3. Paine, R. T.; Narula, C. K. Synthetic routes to boron nitride. Chem. Rev. 1990, 90, 73–91.

    Article  Google Scholar 

  4. O’Connor, T. E. Synthesis of boron nitride. J. Am. Chem. Soc. 1962, 84, 1753–1754.

    Article  Google Scholar 

  5. Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    Article  Google Scholar 

  6. Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C. R. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 2009, 131, 890–891.

    Article  Google Scholar 

  7. Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.

    Article  Google Scholar 

  8. Jiang, X. F.; Weng, Q. H.; Wang, X. B.; Li, X.; Zhang, J.; Golberg, D.; Bando, Y. Recent progress on fabrications and applications of boron nitride nanomaterials: A review. J. Mater. Sci. Technol. 2015, 31, 589–598.

    Article  Google Scholar 

  9. Zhong, B.; Song, L.; Huang, X. X.; Wen, G. W.; Xia, L. Synthesis of boron nitride nanotubes with SiC nanowire as template. Mater. Res. Bull. 2011, 46, 1521–1523.

    Article  Google Scholar 

  10. Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966–967.

    Article  Google Scholar 

  11. Zhong, B.; Huang, X. X.; Wen, G. W.; Yu, H. M.; Zhang, X. D.; Zhang, T.; Bai, H. W. Large-scale fabrication of boron nitride nanotubes via a facile chemical vapor reaction route and their cathodoluminescence properties. Nanosale Res. Lett. 2010, 6, 36.

    Google Scholar 

  12. Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv. Mater. 2007, 19, 2413–2432.

    Article  Google Scholar 

  13. Zhou, H.; Zhou, Z. J.; Yu, G. T.; Chen, W.; Huang, X. R.; Li, Z. R. Nonlinear optical response and transparency of hexagonal boron nitride hybrid graphene nanoribbons. Chem. Phys. Lett. 2014, 614, 57–61.

    Article  Google Scholar 

  14. Zhu, Y. C.; Bando, Y.; Xue, D. F.; Sekiguchi, T.; Golberg, D.; Xu, F. F.; Liu, Q. L. New boron nitride whiskers: Showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B 2004, 108, 6193–6196.

    Article  Google Scholar 

  15. Terauchi, M.; Tanaka, M.; Suzuki, K.; Ogino, A.; Kimura, K. Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett. 2000, 324, 359–364.

    Article  Google Scholar 

  16. Zhong, B.; Zhao, G. L.; Huang, X. X.; Zhang, X. D.; Chen, J. W.; Ren, H. J.; Wen, G. W. A facile route to high-purity BN nanoplates with ultraviolet cathodoluminescence emissions at room temperature. Mater. Res. Bull. 2014, 53, 190–195.

    Article  Google Scholar 

  17. Li, X.; Wang, X. P.; Zhang, J.; Hanagata, N.; Wang, X. B.; Weng, Q. H.; Ito, A.; Bando, Y.; Golberg, D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat. Commun. 2017, 8, 13936.

    Article  Google Scholar 

  18. Zhong, B.; Tang, X. H.; Huang, X. X.; Xia, L.; Zhang, X. D.; Wang, C. J.; Wen, G. W. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property. Mater. Res. Bull. 2015, 64, 61–67.

    Article  Google Scholar 

  19. Sun, C. H.; Guo, C. L.; Ma, X. J.; Xu, L. Q.; Qian, Y. T. A facile route to prepare boron nitride hollow particles at 450 °C. J. Cryst. Growth 2009, 311, 3682–3686.

    Article  Google Scholar 

  20. Wang, X. J; Xie, Y.; Guo, Q. X. Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route. Chem. Commun. 2003, 2688–2689.

    Google Scholar 

  21. Golberg, D.; Bando, Y.; Stéphan, O.; Kurashima, K. Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 1998, 73, 2441–2443.

    Article  Google Scholar 

  22. Zhong, B.; Wu, Y.; Huang, X. X.; Wen, G. W.; Yu, H. M.; Zhang, T. Hollow BN microspheres constructed by nanoplates: Synthesis, growth mechanism and cathodoluminescence property. CrystEngComm 2011, 13, 819–826.

    Article  Google Scholar 

  23. Bernard, S.; Salles, V.; Li, J. P.; Brioude, A.; Bechelany, M.; Demirci, U. B.; Miele, P. High-yield synthesis of hollow boron nitride nano-polyhedrons. J. Mater. Chem. 2011, 21, 8694–8699.

    Article  Google Scholar 

  24. El Khalifi, M.; Bentin, J.; Duverger, E.; Gharbi, T.; Boulahdour, H.; Picaud, F. Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Phys. Chem. Chem. Phys. 2016, 18, 24994–25001.

    Article  Google Scholar 

  25. Zhang, X.; Lian, G.; Zhang, S. J.; Cui, D. L.; Wang, Q. L. Boron nitride nanocarpets: Controllable synthesis and their adsorption performance to organic pollutants. CrystEngComm 2012, 14, 4670–4676.

    Article  Google Scholar 

  26. Sun, Q.; Li, Z.; Searles, D. J.; Chen, Y.; Lu, G. Q.; Du, A. J. Chargecontrolled switchable CO2 capture on boron nitride nanomaterials. J. Am. Chem. Soc. 2013, 135, 8246–8253.

    Article  Google Scholar 

  27. Lei, W. W.; Portehault, D.; Liu, D.; Qin, S.; Chen, Y. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013, 4, 1777.

    Article  Google Scholar 

  28. Lian, G.; Zhang, X.; Zhang, S. J.; Liu, D.; Cui, D. L.; Wang, Q. L. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater. Energy Environ. Sci. 2012, 5, 7072–7080.

    Article  Google Scholar 

  29. Fu, M. Z.; Xing, H. Z.; Chen, X. F.; Chen, F.; Wu, C. M. L.; Zhao, R. S.; Cheng, C. G. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples. J. Chromatogr. A 2014, 1369, 181–185.

    Article  Google Scholar 

  30. Huang, Q.; Bando, Y.; Xu, X.; Nishimura, T.; Zhi C. Y.; Tang, C. C.; Xu, F. F.; Gao, L.; Golberg, D. Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology 2007, 18, 485706.

    Article  Google Scholar 

  31. Golberg, D.; Rode, A.; Bando, Y.; Mitome, M.; Gamaly, E.; Luther-Davies, B. Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diam. Relat. Mater. 2003, 12, 1269–1274.

    Article  Google Scholar 

  32. Golberg, D.; Bando, Y.; Eremets, M.; Takemura, K.; Kurashima, K.; Yusa, H. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69, 2045–2047.

    Article  Google Scholar 

  33. Lee, R. S.; Gavillet, J.; Lamy de la Chapelle, M.; Loiseau, A; Cochon, J. L.; Pigache, C. D.; Thibault, J.; Willaime, F. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration. Phys. Rev. B 2001, 64, 121405.

    Article  Google Scholar 

  34. Nistor, L. C.; Epurescu, G.; Dinescu, M.; Dinescu, G. Boron nitride nanostructures produced by pulsed laser ablation in acetone. IOP Conf. Ser. Mater. Sci. Eng. 2010, 15, 012067.

    Article  Google Scholar 

  35. Tang, C. C.; Bando, Y.; Golberg, D. Large-scale synthesis and structure of boron nitride sub-micron spherical particles. Chem. Commun. 2002, 2826–2827.

    Google Scholar 

  36. Tang, C. C.; Bando, Y.; Huang, Y.; Zhi, C. Y.; Golberg, D. Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv. Funct. Mater. 2008, 18, 3653–3661.

    Article  Google Scholar 

  37. Li, X. P.; Zhang, J.; Yu, C.; Liu, X. X.; Abbas, S.; Li, J.; Xue, Y. M.; Tang, C. C. Hexagonal boron nitride hollow capsules with collapsed surfaces: Chemical vapor deposition with single-source precursor ammonium fluoroborate. Chin. Phys. B 2016, 25, 0781071.

    Google Scholar 

  38. Xu, L. Q.; Peng, Y. Y.; Meng, Z. Y.; Yu, W. C.; Zhang, S. Y.; Liu X. M.; Qian, Y. T. A co-pyrolysis method to boron nitride nanotubes at relative low temperature. Chem. Mater. 2003, 15, 2675–2680.

    Article  Google Scholar 

  39. Chen, L. Y.; Gu, Y. L.; Shi, L.; Yang, Z. H.; Ma, J. H.; Qian, Y. T. A roomtemperature approach to boron nitride hollow spheres. Solid State Commun. 2004, 130, 537–540.

    Article  Google Scholar 

  40. Xu, L. Q.; Peng, Y. Y.; Meng, Z. Y.; Wang, D. B.; Zhang, W. Q.; Qian, Y. T. Fabrication and characterization of hollow spherical boron nitride powders. Chem. Phys. Lett. 2003, 381, 74–79.

    Article  Google Scholar 

  41. Wen, G. W.; Zhong, B.; Huang, X. X.; Yu, H. M.; Zhang, X. D.; Zhang, T.; Bai, H. W. Novel BN hollow microspheres with open mouths—Facile synthesis, growth mechanism, resonant Raman scattering effect, and cathodoluminescence performance. Eur. J. Inorg. Chem. 2010, 2010, 5538–5544.

    Article  Google Scholar 

  42. Huang, J. Y.; Yasuda, H.; Mori, H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett. 1999, 303, 130–134.

    Article  Google Scholar 

  43. Geick, R.; Perry, C. H.; Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 1966, 146, 543–547.

    Article  Google Scholar 

  44. Nemanich, R. J.; Solin, S. A.; Martin, R. M. Light scattering study of boron nitride microcrystals. Phys. Rev. B 1981, 23, 6348–6356.

    Article  Google Scholar 

  45. Schué, L.; Stenger, I.; Fossard, F.; Loiseau, A.; Barjon, J. Characterization methods dedicated to nanometer-thick hBN layers. 2D Mater. 2016, 4, 015028.

    Article  Google Scholar 

  46. Lu, H. B.; Chan, B. C. Y.; Wang, X. L.; Chua, H. T.; Raston, C. L.; Albu-Yaron, A.; Levy, M.; Popowitz-Biro, R.; Tenne, R.; Feuermann, D.; Gordon, J. M. High-yield synthesis of silicon carbide nanowires by solar and lamp ablation. Nanotechnology 2013, 24, 335603.

    Article  Google Scholar 

  47. Gordon, J. M.; Katz, E. A.; Feuermann, D.; Albu-Yaron, A.; Levy, M.; Tenne, R. Singular MoS2, SiO2 and Si nanostructures—Synthesis by solar ablation. J. Mater. Chem. 2008, 18, 458–462.

    Article  Google Scholar 

  48. Levy, M.; Albu-Yaron, A.; Tenne, R.; Feuermann, D.; Katz, E. A.; Babai, D.; Gordon, J. M. Synthesis of inorganic fullerene-like nanostructures by concentrated solar and artificial light. Isr. J. Chem. 2010, 50, 417–425.

    Article  Google Scholar 

  49. Lu, H. B.; Woi, W. S.; Tan, X. Y.; Gibson, C. T.; Chen, X. J.; Raston, C. L.; Gordon, J. M.; Chua, H. T. Synthesis of few-layer graphene by lamp ablation. Carbon 2015, 94, 349–351.

    Article  Google Scholar 

Download references

Acknowledgements

This research was generously funded by a University of Western Australia Pathfinder grant. Also, the authors acknowledge the facilities, and the scientific and technical assistance of the Microscopy Australia at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Gordon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshon, S., Zhang, W., Saunders, M. et al. Panorama of boron nitride nanostructures via lamp ablation. Nano Res. 12, 557–562 (2019). https://doi.org/10.1007/s12274-018-2252-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2252-0

Keywords

Navigation