Skip to main content
Log in

A theranostic agent for cancer therapy and imaging in the second near-infrared window

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Theranostic nanoparticles are integrated systems useful for simultaneous diagnosis and imaging guided delivery of therapeutic drugs, with wide ranging potential applications in the clinic. Here we developed a theranostic nanoparticle (~ 24 nm size by dynamic light scattering) p-FE-PTX-FA based on polymeric micelle encapsulating an organic dye (FE) fluorescing in the 1,000–1,700 nm second near-infrared (NIR-II) window and an anti-cancer drug paclitaxel. Folic acid (FA) was conjugated to the nanoparticles to afford specific binding to molecular folate receptors on murine breast cancer 4T1 tumor cells. In vivo, the nanoparticles accumulated in 4T1 tumor through both passive and active targeting effect. Under an 808 nm laser excitation, fluorescence detection above 1,300 nm afforded a large Stokes shift, allowing targeted molecular imaging tumor with high signal to background ratios, reaching a high tumor to normal tissue signal ratio (T/NT) of (20.0 ± 2.3). Further, 4T1 tumors on mice were completed eradicated by paclitaxel released from p-FE-PTA-FA within 20 days of the first injection. Pharmacokinetics and histology studies indicated p-FE-PTX-FA had no obvious toxic side effects to major organs. This represented the first NIR-II theranostic agent developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.

    Article  Google Scholar 

  2. Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138–157.

    Article  Google Scholar 

  3. Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79.

    Article  Google Scholar 

  4. Cole, A. J.; Yang, V. C.; David, A. E. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011, 29, 323–332.

    Article  Google Scholar 

  5. Lee, G. Y.; Qian, W. P.; Wang, L. Y.; Wang, Y. A.; Staley, C. A.; Satpathy, M.; Nie, S. M.; Mao, H.; Yang, L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 2013, 7, 2078–2089.

    Article  Google Scholar 

  6. Liu, T.; Wu, G. Y.; Cheng, J. J.; Lu, Q.; Yao, Y. J.; Liu, Z. J.; Zhu, D. C.; Zhou, J.; Xu, J. R.; Zhu, J. et al. Multifunctional lymph-targeted platform based on Mn@mSiO2 nanocomposites: Combining PFOB for dual-mode imaging and DOX for cancer diagnose and treatment. Nano Res. 2016, 9, 473–489.

    Article  Google Scholar 

  7. Zhou, M.; Song, S. L.; Zhao, J.; Tian, M.; Li, C. Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. J. Mater. Chem. B 2015, 3, 8939–8948.

    Article  Google Scholar 

  8. Baum, R. P.; Kulkarni, H. R. THERANOSTICS: From molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy—The Bad Berka experience. Theranostics 2012, 2, 437–447.

    Article  Google Scholar 

  9. Nurunnabi, M.; Cho, K. J.; Choi, J. S.; Huh, K. M.; Lee, Y. K. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials 2010, 31, 5436–5444.

    Article  Google Scholar 

  10. Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015, 27, 4169–4177.

    Article  Google Scholar 

  11. Wu, X. M.; Sun, X. R.; Guo, Z. Q.; Tang, J. B.; Shen, Y. Q.; James, T. D.; Tian, H.; Zhu, W. H. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc. 2014, 136, 3579–3588.

    Article  Google Scholar 

  12. Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

    Article  Google Scholar 

  13. Stolik, S.; Delgado, J. A.; Pérez, A.; Anasagasti, L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B 2000, 57, 90–93.

    Article  Google Scholar 

  14. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.

    Article  Google Scholar 

  15. Tagaya, N.; Yamazaki, R.; Nakagawa, A.; Abe, A.; Hamada, K.; Kubota, K.; Oyama, T. Intraoperative identification of sentinel lymph nodes by nearinfrared fluorescence imaging in patients with breast cancer. Am. J. Surg. 2008, 195, 850–853.

    Article  Google Scholar 

  16. He, X. X.; Wu, X.; Wang, K. M.; Shi, B. H.; Hai, L. Methylene blueencapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials 2009, 30, 5601–5609.

    Article  Google Scholar 

  17. Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

    Article  Google Scholar 

  18. Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Throughskull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.

    Article  Google Scholar 

  19. Diao, S.; Blackburn, J. L.; Hong, G. S.; Antaris, A. L.; Chang, J. L.; Wu, J. Z.; Zhang, B.; Cheng, K.; Kuo, C. J.; Dai, H. J. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. 2015, 127, 14971–14975.

    Article  Google Scholar 

  20. Zebibula, A.; Alifu, N.; Xia, L. Q.; Sun, C. W.; Yu, X. M.; Xue, D. W.; Liu, L. W.; Li, G. H.; Qian, J. Ultrastable and biocompatible NIRII quantum dots for functional bioimaging. Adv. Funct. Mater. 2018, 28, 1703451.

    Article  Google Scholar 

  21. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.

    Article  Google Scholar 

  22. Singla, A. K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192.

    Article  Google Scholar 

  23. Kim, S. C.; Kim, D. W.; Shim, Y. H.; Bang, J. S.; Oh, H. S.; Kim, S. W.; Seo, M. H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release 2001, 72, 191–202.

    Article  Google Scholar 

  24. Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 2017, 29, 1605497.

    Article  Google Scholar 

  25. Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.

    Article  Google Scholar 

  26. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660.

    Article  Google Scholar 

  27. Chen, L. X.; Zhang, Y. M.; Cao, Y.; Zhang, H. Y.; Liu, Y. Bridged bis(β-cyclodextrin)s-based polysaccharide nanoparticles for controlled paclitaxel delivery. RSC Adv. 2016, 6, 28593–28598.

    Article  Google Scholar 

  28. Song, Y. C.; Shi, W.; Chen, W.; Li, X. H.; Ma, H. M. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J. Mater. Chem. 2012, 22, 12568–12573.

    Article  Google Scholar 

  29. Biabanikhankahdani, R.; Bayat, S.; Ho, K. L.; Alitheen, N. B. M.; Tan, W. S. A simple add-and-display method for immobilisation of cancer drug on his-tagged virus-like nanoparticles for controlled drug delivery. Sci. Rep. 2017, 7, 5303.

    Article  Google Scholar 

  30. Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P. R.; Mićić, O. I.; Ellingson, R. J.; Nozik, A. J. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241–3247.

    Article  Google Scholar 

  31. Sun, Y.; Qu, C. R.; Chen, H.; He, M. M.; Tang, C.; Shou, K. Q.; Hong, S.; Yang, M.; Jiang, Y. X.; Ding, B. B. et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem. Sci. 2016, 7, 6203–6207.

    Article  Google Scholar 

  32. Semonin, O. E.; Johnson, J. C.; Luther, J. M.; Midgett, A. G.; Nozik, A. J.; Beard, M. C. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 2010, 1, 2445–2450.

    Article  Google Scholar 

  33. Hatami, S.; Würth, C.; Kaiser, M.; Leubner, S.; Gabriel, S.; Bahrig, L.; Lesnyak, V.; Pauli, J.; Gaponik, N.; Eychmüller, A. et al. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1−x Hgx Te and PbS quantum dots—Method- and material-inherent challenges. Nanoscale 2015, 7, 133–143.

    Article  Google Scholar 

  34. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for nearinfrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    Article  Google Scholar 

  35. Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.

    Article  Google Scholar 

  36. Alibolandi, M.; Abnous, K.; Sadeghi, F.; Hosseinkhani, H.; Ramezani, M.; Hadizadeh, F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int. J. Pharm. 2016, 500, 162–178.

    Article  Google Scholar 

  37. Karimi Shervedani, R.; Yaghoobi, F.; Torabi, M.; Samiei Foroushani, M. Nanobioconjugated system formed of folic acid–deferrioxamine–Ga(III) on gold surface: Preparation, characterization, and activities for capturing of mouse breast cancer cells 4T1. J. Phys. Chem. C 2016, 120, 23212–23220.

    Article  Google Scholar 

  38. Gao, Z. G.; Tian, L.; Hu, J.; Park, I. S.; Bae, Y. H. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J. Control. Release 2011, 152, 84–89.

    Article  Google Scholar 

  39. Liu, S. Q.; Wiradharma, N.; Gao, S. J.; Tong, Y. W.; Yang, Y. Y. Biofunctional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 2007, 28, 1423–1433.

    Article  Google Scholar 

  40. Zhu, S. J.; Yang, Q. L.; Antaris, A. L.; Yue, J. Y.; Ma, Z. R.; Wang, H. S.; Huang, W.; Wan, H.; Wang, J.; Diao, S. et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl. Acad. Sci. USA 2017, 114, 962–967.

    Article  Google Scholar 

  41. Wang, W. Z.; Ma, Z. R.; Zhu, S. J.; Wan, H.; Yue, J. Y.; Ma, H. L.; Ma, R.; Yang, Q. L.; Wang, Z. H.; Li, Q. et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophorepeptide probe. Adv. Mater. 2018, 30, 1800106.

    Article  Google Scholar 

  42. O’Toole, S. A.; Sheppard, B. L.; McGuinness, E. P. J.; Gleeson, N. C.; Yoneda, M.; Bonnar, J. The MTS assay as an indicator of chemosensitivity/ resistance in malignant gynaecological tumours. Cancer Detect. Prev. 2003, 27, 47–54.

    Article  Google Scholar 

  43. Zubris, K. A. V.; Liu, R.; Colby, A.; Schulz, M. D.; Colson, Y. L.; Grinstaff, M. W. In vitro activity of paclitaxel-loaded polymeric expansile nanoparticles in breast cancer cells. Biomacromolecules 2013, 14, 2074–2082.

    Article  Google Scholar 

  44. Yi, X. L.; Lian, X. H.; Dong, J. X.; Wan, Z. Y.; Xia, C. Y.; Song, X.; Fu, Y.; Gong, T.; Zhang, Z. R. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol. Pharmaceutics 2015, 12, 4085–4098.

    Article  Google Scholar 

  45. Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.

    Article  Google Scholar 

  46. Onda, N.; Kimura, M.; Yoshida, T.; Shibutani, M. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging. Int. J. Cancer 2016, 139, 673–682.

    Article  Google Scholar 

  47. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

    Article  Google Scholar 

  48. Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151.

    Article  Google Scholar 

  49. Oh, N.; Park, J. H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 2014, 9, 51–63.

    Google Scholar 

  50. Day, K. E.; Sweeny, L.; Kulbersh, B.; Zinn, K. R.; Rosenthal, E. L. Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol. Imaging Biol. 2013, 15, 722–729.

    Article  Google Scholar 

  51. Knutson, S.; Raja, E.; Bomgarden, R.; Nlend, M.; Chen, A.; Kalyanasundaram, R.; Desai, S. Development and evaluation of a fluorescent antibody-drug conjugate for molecular imaging and targeted therapy of pancreatic cancer. PLoS One 2016, 11, e0157762.

    Article  Google Scholar 

  52. Cheng, Z.; Wu, Y.; Xiong, Z. M.; Gambhir, S. S.; Chen, X. Y. Nearinfrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjug. Chem. 2005, 16, 1433–1441.

    Article  Google Scholar 

  53. Choi, H. S.; Gibbs, S. L.; Lee, J. H.; Kim, S. H.; Ashitate, Y.; Liu, F. B.; Hyun, H.; Park, G.; Xie, Y.; Bae, S. et al. Targeted zwitterionic nearinfrared fluorophores for improved optical imaging. Nat. Biotechnol. 2013, 31, 148–153.

    Article  Google Scholar 

  54. Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016, 9, 663–673.

    Article  Google Scholar 

  55. Wang, Z. G.; Fu, B. S.; Zou, S. W.; Duan, B.; Chang, C. Y.; Yang, B.; Zhou, X.; Zhang, L. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 2016, 9, 214–223.

    Article  Google Scholar 

  56. Wang, D. L.; Liu, B.; Ma, Y.; Wu, C. W.; Mou, Q. B.; Deng, H. P.; Wang, R. B.; Yan, D. Y.; Zhang, C.; Zhu, X. Y. A molecular recognition approach to synthesize nucleoside analogue based multifunctional nanoparticles for targeted cancer therapy. J. Am. Chem. Soc. 2017, 139, 14021–14024.

    Article  Google Scholar 

  57. Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health NIH DP1-NS-105737, the Deng family gift, and the Shenzhen Peacock Program Grant KQTD20140630160825828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wan, H., Wang, W. et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 12, 273–279 (2019). https://doi.org/10.1007/s12274-018-2210-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2210-x

Keywords

Navigation