Skip to main content
Log in

Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Formamidinium lead bromide perovskite (FAPbBr3) nanocrystals have attracted increasing attention due to their greener photoluminescence (PL) and higher thermal stability in comparison to more popular methylammonium lead bromide perovskite (MAPbBr3). Here we proposed a facile and highly reproducible room-temperature method for the preparation of few-layer (1–4) two-dimensional (2D) FAPbBr3 nanoplatelets (NPs) with ultrapure green PL at 532 nm and high photoluminescence quantum yield (PLQY) of 88%. High-efficiency ultrapure green light-emitting diodes (LEDs) based on the few-layer 2D FAPbBr3 NPs were further demonstrated. The LEDs showed a maximum current efficiency (CE) of 15.31 cd/A and an external quantum efficiency (EQE) of 3.53%, which are significantly better than the FAPbBr3 polycrystalline film-based LEDs reported so far. Significantly, the 2D FAPbBr3 NPs-based LEDs exhibited an ultrapure-green color emission that could cover 97% of the Recommendation 2020 (Rec. 2020) color standard and 114% of the national television system committee (NTSC) standard in the CIE 1931 color space. Moreover, the devices possessed a much better stability than the MAPbBr3 nanocrystals-based LEDs in air; the half lifetime T50 of our devices was about 5 times longer than that of MAPbBr3 nanocrystals-based LEDs. This work demonstrates the great potential of FAPbBr3 NPs in light-emitting devices for future ultrahigh-resolution displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.

    Article  Google Scholar 

  2. Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.

    Article  Google Scholar 

  3. Deng, W.; Fang, H.; Jin, X. C.; Zhang, X. J.; Zhang X. H.; Jie, J. S. Organic-inorganic hybrid perovskite quantum dots for light-emitting diodes. J. Mater. Chem. C 2018, 6, 4831–4841.

    Article  Google Scholar 

  4. Li, G. R.; Tan, Z. K.; Di, D. W.; Lai, M. L.; Jiang, L.; Lim, J. H. W.; Friend, R. H.; Greenham, N. C. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 2015, 15, 2640–2644.

    Article  Google Scholar 

  5. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Kovalenko, M. V. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 2016, 138, 14202–14205.

    Article  Google Scholar 

  6. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

    Article  Google Scholar 

  7. Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

    Article  Google Scholar 

  8. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  9. Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient lightemitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.

    Article  Google Scholar 

  10. Shi, Z. F.; Li, Y.; Zhang, Y. T.; Chen, Y. S.; Li, X. J.; Wu, D.; Xu, T. T.; Shan, C. X.; Du, G. T. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017, 17, 313–321.

    Article  Google Scholar 

  11. Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

    Article  Google Scholar 

  12. Cho, H.; Kim, J. S.; Wolf, C.; Kim, Y. H.; Yun, H. J.; Jeong, S. H.; Sadhanala, A.; Venugopalan, V.; Choi, J. W.; Lee, C. L. et al. High-efficiency polycrystalline perovskite light-emitting diodes based on mixed cations. ACS Nano 2018, 12, 2883–2892.

    Article  Google Scholar 

  13. Deng, W.; Xu, X. Z.; Zhang, X. J.; Zhang, Y. D.; Jin, X. C.; Wang, L.; Lee, S. T.; Jie, J. S. Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater. 2016, 26, 4797–4802.

    Article  Google Scholar 

  14. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  Google Scholar 

  15. Li, G. R.; Rivarola, F. W. R.; Davis, N J. L. K.; Bai, K. S.; Jellicoe, T C.; de la Peña, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.

    Article  Google Scholar 

  16. Xing, J.; Yan, F.; Zhao, Y. W.; Chen, S.; Yu, H. K.; Zhang, Q.; Zeng, R. G.; Demir, H. V.; Sun, X. W.; Huan, A. et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 2016, 10, 6623–6630.

    Article  Google Scholar 

  17. Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xu, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

    Article  Google Scholar 

  18. Zhao, L. F.; Yeh, Y. W.; Tran, N. L.; Wu, F.; Xiao, Z. G.; Kerner, R. A.; Lin, Y. L.; Scholes, G. D.; Yao, N.; Rand, B. P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano 2017, 11, 3957–3964.

    Article  Google Scholar 

  19. Lee, J. W.; Choi, Y. J.; Yang, J. M.; Ham, S.; Jeon, S. K.; Lee, J. Y.; Song, Y. H.; Ji, E. K.; Yoon, D. H.; Seo, S. et al. In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 2017, 11, 3311–3319.

    Article  Google Scholar 

  20. Zhao, F. C.; Chen, D.; Chang, S.; Huang, H. L.; Tong, K.; Xiao, C. T.; Chou, S. Y.; Zhong H. Z.; Pei, Q. B. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowirepolymer composite electrode. J. Mater. Chem. C 2017, 5, 531–538.

    Article  Google Scholar 

  21. Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

    Article  Google Scholar 

  22. Jin, X. C.; Zhang, X. J.; Fang, H.; Deng, W.; Xu, X. Z.; Jie, J. S.; Zhang, X. H. Facile assembly of high-quality organic-inorganic hybrid perovskite quantum dot thin films for bright light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1705189.

    Article  Google Scholar 

  23. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith; H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

    Article  Google Scholar 

  24. Li, Q. H.; Li, H. Y.; Shen, H. B.; Wang, F. F.; Zhao, F.; Li, F.; Zhang, X. G.; Li, D. Y.; Jin, X.; Sun, W. F. Solid ligand-assisted storage of air-stable formamidinium lead halide quantum dots via restraining the highly dynamic surface toward brightly luminescent light-emitting diodes. ACS Photonics 2017, 4, 2504–2512.

    Article  Google Scholar 

  25. Levchuk, L.; Osvet, A.; Tang, X. F.; Brandl, M.; Perea, J. D.; Hoegl, F.; Matt, G. J.; Hock, R.; Batentschuk, M.; Brabec, C. J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 2017, 17, 2765–2770.

    Article  Google Scholar 

  26. Meng, L.; Yao, E. P.; Hong, Z. R.; Chen, H. J.; Sun, P. Y.; Yang, Z. L.; Li, G.; Yang, Y. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 2017, 29, 1603826.

    Article  Google Scholar 

  27. Perumal, A.; Shendre, S.; Li, M. J.; Tay, Y. K. E.; Sharma, V. K.; Chen, S.; Wei, Z. H.; Liu, Q.; Gao, Y.; Buenconsejo, P. J. S. et al. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Sci. Rep. 2016, 6, 36733.

    Article  Google Scholar 

  28. Kumar, S.; Jagielski, J.; Kallikounis, N.; Kim, Y. H.; Wolf, C.; Jenny, F.; Tian, T.; Hofer, C. J.; Chiu, Y. C.; Stark, W. J. et al. Ultrapure green lightemitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. 2017, 17, 5277–5284.

    Article  Google Scholar 

  29. Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D. et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 2014, 5, 2791–2795.

    Article  Google Scholar 

  30. Minh, D. N.; Kim, J.; Hyon, J.; Sim, J. H.; Sowlih, H. H.; Seo, C.; Nam, J.; Eom, S.; Suk, S.; Lee, S. et al. Room-temperature synthesis of widely tunable formamidinium lead halide perovskite nanocrystals. Chem. Mater. 2017, 29, 5713–5719.

    Article  Google Scholar 

  31. Arora, N.; Dar, M. I.; Abdi-Jalebi, M.; Giordano, F.; Pellet, N.; Jacopin, G.; Friend, R. H.; Zakeeruddin, S. M.; Grätzel, M. Intrinsic and extrinsic stability of formamidinium lead bromide perovskite solar cells yielding high photovoltage. Nano Lett. 2016, 16, 7155–7162.

    Article  Google Scholar 

  32. Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.

    Article  Google Scholar 

  33. Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun. 2017, 8, 15640.

    Article  Google Scholar 

  34. Han, Q. J.; Wu, W. Z.; Liu, W. L.; Yang, Q. X.; Yang, Y. Q. Temperaturedependent photoluminescence of CsPbX3 nanocrystal films. J. Lumin. 2018, 198, 350–356.

    Article  Google Scholar 

  35. Yang, Z.; Wang, M. Q.; Qiu, H. M.; Yao, X.; Lao, X. Z.; Xu, S. J.; Lin, Z. H.; Sun, L. Y.; Shao, J. Y. Engineering the exciton dissociation in quantumconfined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater. 2018, 28, 1705908.

    Article  Google Scholar 

  36. Galkowski, K.; Mitioglu, A.; Miyata, A.; Plochocka, P.; Portugall, O.; Eperon, G. E.; Wang, J. T. W.; Stergiopoulos, T.; Stranks, S. D.; Snaith, H. J. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 2016, 9, 962–970.

    Article  Google Scholar 

  37. Yang, X. Y.; Mutlugun, E.; Dang, C.; Dev, K.; Gao, Y.; Tan, S. T.; Sun, X. W.; Demir, H. V. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers. ACS Nano 2014, 8, 8224–8231.

    Article  Google Scholar 

  38. Castan, A.; Kim, H. M.; Jang, J. All-solution-processed inverted quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2014, 6, 2508–2515.

    Article  Google Scholar 

  39. Tanaka, D.; Sasabe, H.; Li, Y. J.; Su, S. J.; Takeda, T.; Kido, J. Ultra high efficiency green organic light-emitting devices. Jpn. J. Appl. Phys. 2007, 46, L10–L12.

    Article  Google Scholar 

  40. Jou, J. H.; Li, C. J.; Shen, S. M.; Peng, S. H.; Chen, Y. L.; Jou, Y. C.; Hong, J. H.; Chin, C. L.; Shyue, J. J.; Chen, S. P. et al. Highly efficient green organic light emitting diode with a novel solution processable iridium complex emitter. J. Mater. Chem. C 2013, 1, 4201–4208.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2016YFA0202400), the National Natural Science Foundation of China (Nos. 51672180, 51622306, and 21673151), Collaborative Innovation Center of Suzhou Nano Science & Technology, Qing Lan Project, 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiujuan Zhang or Xiaohong Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Deng, W., Zhang, X. et al. Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes. Nano Res. 12, 171–176 (2019). https://doi.org/10.1007/s12274-018-2197-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2197-3

Keywords

Navigation