Skip to main content
Log in

The influence of physiological environment on the targeting effect of aptamer-guided gold nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aptamer guided nanomedicine shows great promise in targeted cancer therapies. However the loss of targeting capacity during in vivo or clinical trials has largely hindered its popularity and there are no systematic studies to elucidate the causes. Herein, we investigated such loss of targeting capacity by examining how the physiological milieu affected targeting effect. Aptamer functionalized gold nanoparticle (AuNP) was chosen as the model and exposed to human blood serum that is used to mimic physiological milieu. Dynamic light scattering (DLS), flow cytometry and label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) were employed to determine variations of NPs’ surface chemistry and biological identities changes after serum exposure. Results showed that the targeting ability loss was caused by protein corona blocking, replacement and enzymatic cleavage of surface aptamer targeting ligands. Noteworthy, the aggregation issue is critical for the smaller NPs. Analysis of the protein corona profile indicated the accumulation of immune-related proteins on the surface of aptamer-conjugated NPs, which could induce immune response, resulting in rapid clearance of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381.

    Article  Google Scholar 

  2. Chow, E. K. H.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med. 2013, 5, 216rv4.

    Google Scholar 

  3. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    Article  Google Scholar 

  4. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    Article  Google Scholar 

  5. Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C. W. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 2014, 8, 5696–5706.

    Article  Google Scholar 

  6. Hong, H.; Yang, K.; Zhang, Y.; Engle, J. W.; Feng, L. Z.; Yang, Y.; Nayak, T. R.; Goel, S.; Bean, J.; Theuer, C. P. et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 2012, 6, 2361–2370.

    Article  Google Scholar 

  7. Wang, X. W.; Gao, W.; Fan, H. H.; Ding, D.; Lai, X. F.; Zou, Y. X.; Chen, L.; Chen, Z.; Tan, W. H. Simultaneous tracking of drug molecules and carriers using aptamer-functionalized fluorescent superstable gold nanorodcarbon nanocapsules during thermo-chemotherapy. Nanoscale 2016, 8, 7942–7948.

    Article  Google Scholar 

  8. Huang, L.; Li, Z. J.; Zhao, Y.; Zhang, Y. W.; Wu, S.; Zhao, J. Z.; Han, G. Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 14586–14591.

    Article  Google Scholar 

  9. Shangguan, D.; Bing, T.; Zhang, N. Cell-SELEX: Aptamer selection against whole cells. In Aptamers Selected by Cell-SELEX for Theranostics. Tan, W.; Fang, X., Eds.; Springer: Berlin, Heidelberg, 2015; pp 13–33.

    Google Scholar 

  10. Kuai, H. L.; Zhao, Z. L.; Mo, L. T.; Liu, H.; Hu, X. X.; Fu, T.; Zhang, X. B.; Tan, W. H. Circular bivalent aptamers enable in vivo stability and recognition. J. Am. Chem. Soc. 2017, 139, 9128–9131.

    Article  Google Scholar 

  11. Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, R. W.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet–aptamer nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220–11223.

    Article  Google Scholar 

  12. Liu, Q. L.; Jin, C.; Wang, Y. Y.; Fang, X. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater. 2014, 6, e95.

    Article  Google Scholar 

  13. Wang, Y.; Li, Z. H.; Weber, T. J.; Hu, D. H.; Lin, C. T.; Li, J. H.; Lin, Y. H. In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal. Chem. 2013, 85, 6775–6782.

    Article  Google Scholar 

  14. Wang, S. S.; Liu, Z. K.; Zou, Y. X.; Lai, X. F.; Ding, D.; Chen, L.; Zhang, L. Q.; Wu, Y.; Chen, Z.; Tan, W. H. Elucidating the cellular uptake mechanism of aptamer-functionalized graphene-isolated-Au-nanocrystals with dual-modal imaging. Analyst 2016, 141, 3337–3342.

    Article  Google Scholar 

  15. Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

    Article  Google Scholar 

  16. Tan, W. H.; Donovan, M. J.; Jiang, J. H. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev. 2013, 113, 2842–2862.

    Article  Google Scholar 

  17. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

    Article  Google Scholar 

  18. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.

    Article  Google Scholar 

  19. Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 2007, 104, 2050–2055.

    Article  Google Scholar 

  20. Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147.

    Article  Google Scholar 

  21. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Åberg, C.; Mahon, E.; Dawson, K. A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143.

    Article  Google Scholar 

  22. Dai, Q.; Walkey, C.; Chan, W. C. W. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem., Int. Ed. 2014, 53, 5093–5096.

    Article  Google Scholar 

  23. Walkey, C. D.; Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799.

    Article  Google Scholar 

  24. Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50−200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043.

    Article  Google Scholar 

  25. Chou, L. Y. T.; Chan, W. C. W. Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models. Adv. Healthc. Mater. 2012, 1, 714–721.

    Article  Google Scholar 

  26. Shangguan, D. H.; Li, Y.; Tang, Z. W.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. H. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl Acad. Sci. USA 2006, 103, 11838–11843.

    Article  Google Scholar 

  27. Chinen, A. B.; Guan, C. M.; Mirkin, C. A. Spherical nucleic acid nanoparticle conjugates enhance G-quadruplex formation and increase serum protein interactions. Angew. Chem. 2015, 127, 537–541.

    Article  Google Scholar 

  28. Hallick, R. B.; Chelm, B. K.; Gray, P. W.; Orozco, E. M. Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res. 1977, 4, 3055–3064.

    Article  Google Scholar 

  29. Wang, H.; Yang, R. H.; Yang, L.; Tan, W. H. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 2009, 3, 2451–2460.

    Article  Google Scholar 

  30. Liang, H.; Zhang, X.-B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNA-containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891–1901.

    Article  Google Scholar 

  31. Cedervall, T.; Lynch, I.; Foy, M.; Berggård, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 5754–5756.

    Article  Google Scholar 

  32. Lazarovits, J.; Chen, Y. Y.; Sykes, E. A.; Chan, W. C. W. Nanoparticleblood interactions: The implications on solid tumour targeting. Chem. Commun. 2015, 51, 2756–2767.

    Article  Google Scholar 

  33. Walkey, C. D.; Olsen, J. B.; Song, F. Y.; Liu, R.; Guo, H. B.; Olsen, D. W. H.; Cohen, Y.; Emili, A.; Chan, W. C. W. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 2014, 8, 2439–2455.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Yanyan Lin at The First Hospital of Lanzhou University for donation of blood samples. We would also like to thank Dr. Jianglin Li for performing LC-MS/MS. This work was financially supported by the National Natural Science Foundation of China (Nos. 21522501, 21521063 and 61673405), Hunan Provincial Natural Science Foundation of China (No. 2018JJ1007), and the Science and Technology Development Fund of Macao S.A.R (FDCT, 097/2015/A3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen or Weihong Tan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhang, Y., Sykes, E.A. et al. The influence of physiological environment on the targeting effect of aptamer-guided gold nanoparticles. Nano Res. 12, 129–135 (2019). https://doi.org/10.1007/s12274-018-2191-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2191-9

Keywords

Navigation