Skip to main content
Log in

Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Room temperature positive magnetoresistance (PMR) in graphene is a conventional phenomenon but we observed large negative magnetoresistance (NMR) in GF/polydimethylsiloxane (GF/PDMS) at room temperature for the first time. The largest NMR ~ 35% was detected at 250 K, while PMR is observed below 200 K. Furthermore, PMR at all temperatures is observed in regular GF specimens, hence, NMR is the result of the infiltration with the electrically insulating polymer. Forward interference and wavefunction shrinkage model has been employed to understand the transport mechanism in GF/PDMS. A critical temperature ~ 224 K for switching between NMR and PMR is observed at the crystallization temperature of PDMS, suggesting a change in polymer chain conformation may be a major reason leading to NMR in GF/PDMS specimens thus role of mechanical properties of PDMS in NMR cannot be ignored and observed locally via specially resolved atomic force microscopy. In addition, storage modulus and heat flow study shows similar transition temperature (~ 200 K) of NMR to PMR and provide an evidence of mechanical stable specimens. As is known, large, tunable, and unsaturated NMR at room temperature is very useful for future facile practical shapeable magnetoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sagar, R. U. R.; Mahmood, N.; Stadler, F. J.; Anwar, T.; Navale, S. T.; Shehzad, K.; Du, B. High capacity retention anode material for lithium ion battery. Electrochim. Acta 2016, 211, 156–163.

    Article  Google Scholar 

  2. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  3. Ma, Y. F.; Chen, Y. S. Three-dimensional graphene networks: Synthesis, properties and applications. Nat. Sci. Rev. 2015, 2, 40–53.

    Article  Google Scholar 

  4. Krueger, E.; Chang, A. N.; Brown, D.; Eixenberger, J.; Brown, R.; Rastegar, S.; Yocham, K. M.; Cantley, K. D.; Estrada, D. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng. 2016, 2, 1234–1241.

    Article  Google Scholar 

  5. Anwar, T.; Li, W.; Hussain, N.; Wang, C.; Sagar, R. U. R.; Liang, T. X. Effect of annealing atmosphere induced crystallite size changes on the electrochemical properties of TiO2 nanotubes arrays. J. Elec. Eng. 2016, 4, 43–51.

    Google Scholar 

  6. Anwar, T.; Li, W.; Liang, T. X.; He, X. M.; Sagar, R. U. R.; Shehzad, K. Effect of aspect ratio of titanium dioxide nanotube arrays on the performance of lithium ion battery. Int. J. Electrochem. Sci. 2015, 10, 6537–6547.

    Google Scholar 

  7. Anwar, T.; Li, W.; Li, J. Y.; Wang, C.; Sagar, R. U. R.; Liang, T. X. Lithium storage study on MoO3-grafted TiO2 nanotube arrays. Appl. Nano. 2016, 6, 1149–1157.

    Article  Google Scholar 

  8. Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macrostructures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.

    Article  Google Scholar 

  9. Jayanthi, S.; Mukherjee, A.; Chatterjee, K.; Sood, A. K.; Misra, A. Tailored nitrogen dioxide sensing response of three-dimensional graphene foam. Sens. Actuators B: Chem. 2016, 222, 21–27.

    Article  Google Scholar 

  10. Makarov, D.; Melzer, M.; Karnaushenko, D.; Schmidt, O. G. Shapeable magnetoelectronics. Appl. Phys. Rev. 2016, 3, 011101.

    Article  Google Scholar 

  11. Mao, J. H.; Jiang, Y. H.; Moldovan, D.; Li, G. H.; Watanabe, K.; Taniguchi, T.; Masir, M. R.; Peeters, F. M.; Andrei, E. Y. Realization of a tunable artificial atom at a supercritically charged vacancy in graphene. Nat. Phys. 2016, 12, 545–549.

    Article  Google Scholar 

  12. Li, P.; Zhang, Q.; He, X.; Ren, W. C.; Cheng, H. M.; Zhang, X. X. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam. Phys. Rev. B 2016, 94, 045402.

    Article  Google Scholar 

  13. Jun, Y. S.; Sy, S.; Ahn, W.; Zarrin, H.; Rasen, L.; Tjandra, R.; Amoli, B. M.; Zhao, B. X.; Chiu, G.; Yu, A. P. Highly conductive interconnected graphene foam based polymer composite. Carbon 2015, 95, 653–658.

    Article  Google Scholar 

  14. Galluzzi, M.; Biswas, C. S.; Wu, Y. H.; Wang, Q.; Du, B.; Stadler, F. J. Space-resolved quantitative mechanical measurements of soft and supersoft materials by atomic force microscopy. NPG Asia Mater. 2016, 8, e327.

    Article  Google Scholar 

  15. Shehzad, K.; Shi, T. J.; Qadir, A.; Wan, X.; Guo, H. W.; Ali, A.; Xuan, W. P.; Xu, H.; Gu, Z. Z.; Peng, X. S. et al. Designing an efficient multimode environmental sensor based on graphene–silicon heterojunction. Adv. Mater. Technol. 2017, 2, 1600262.

    Article  Google Scholar 

  16. Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

    Article  Google Scholar 

  17. Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413–1416.

    Article  Google Scholar 

  18. Sagar, R. U. R.; Galluzzi, M.; Wan, C. H.; Shehzad, K.; Navale, S. T.; Anwar, T.; Mane, R. S.; Piao, H. G.; Ali, A.; Stadler, F. J. Large, linear, and tunable positive magnetoresistance of mechanically stable graphene foam-toward high-performance magnetic field sensors. ACS Appl. Mater. Interfaces 2017, 9, 1891–1898.

    Article  Google Scholar 

  19. Saleemi, A. S.; Sagar, R. U. R.; Singh, R.; Luo, Z. C.; Zhang, X. Z. Angle dependent magnetotransport in transfer-free amorphous carbon thin films. J. Phys. D: Appl. Phys. 2016, 49, 415005.

    Article  Google Scholar 

  20. Sagar, R. U. R.; Saleemi, A. S.; Zhang, X. Z. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films. J. Appl. Phys. 2015, 117, 174503.

    Article  Google Scholar 

  21. Sagar, R. U. R.; Zhang, X. Z.; Wang, J. M.; Xiong, C. Y. Negative magnetoresistance in undoped semiconducting amorphous carbon films. J. Appl. Phys. 2014, 115, 123708.

    Article  Google Scholar 

  22. Sagar, R. U. R.; Saleemi, A. S.; Shehzad, K.; Navale, S. T.; Mane, R. S.; Stadler, F. J. Non-magnetic thin films for magnetic field position sensor. Sens. Actuators A: Phys. 2017, 254, 89–94.

    Article  Google Scholar 

  23. Sagar, R. U. R.; Zhang, X. Z.; Xiong, C. Y.; Yu, Y. Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 2014, 76, 64–70.

    Article  Google Scholar 

  24. Liao, Z. M.; Wu, H. C.; Kumar, S.; Duesberg, G. S.; Zhou, Y. B.; Cross, G. L.W.; Shvets, I. V.; Yu, D. P. Large magnetoresistance in few layer graphene stacks with current perpendicular to plane geometry. Adv. Mater. 2012, 24, 1862–1866.

    Article  Google Scholar 

  25. Bodepudi, S. C.; Singh, A. P.; Pramanik, S. Giant current-perpendicularto- plane magnetoresistance in multilayer graphene as grown on nickel. Nano Lett. 2014, 14, 2233–2241.

    Article  Google Scholar 

  26. Kempa, H.; Esquinazi, P.; Kopelevich, Y. Field-induced metal-insulator transition in the c-axis resistivity of graphite. Phys. Rev. B 2002, 65, 241101.

    Article  Google Scholar 

  27. Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

    Article  Google Scholar 

  28. Quivy, A.; Deltour, R.; Jansen, A. G. M.; Wyder, P. Transport phenomena in polymer-graphite composite materials. Phys. Rev. B 1989, 39, 1026–1030.

    Article  Google Scholar 

  29. Liang, S. H.; Yang, H. W.; Renucci, P.; Tao, B. S.; Laczkowski, P.; Mc-Murtry, S.; Wang, G.; Marie, X.; George, J. M.; Petit-Watelot, S. et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 2017, 8, 14947.

    Article  Google Scholar 

  30. Bloom, F. L.; Wagemans, W.; Kemerink, M.; Koopmans, B. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys. Rev. Lett. 2007, 99, 257201.

    Article  Google Scholar 

  31. Gu, H. B.; Guo, J.; Sadu, R.; Huang, Y. D.; Haldolaarachchige, N.; Chen, D. L.; Young, D. P.; Wei, S. Y.; Guo, Z. H. Separating positive and negative magnetoresistance for polyaniline-silicon nanocomposites in variable range hopping regime. Appl. Phys. Lett. 2013, 102, 212403.

    Article  Google Scholar 

  32. Wang, J. M.; Zhang, X. Z.; Wan, C. H.; Vanacken, J.; Moshchalkov, V. V. Magnetotransport properties of undoped amorphous carbon films. Carbon 2013, 59, 278–282.

    Article  Google Scholar 

  33. Zhou, Y. B.; Han, B. H.; Liao, Z. M.; Wu, H. C.; Yu, D. P. From positive to negative magnetoresistance in graphene with increasing disorder. Appl. Phys. Lett. 2011, 98, 222502.

    Article  Google Scholar 

  34. Son, M.; Pak, Y.; Chee, S. S.; Auxilia, F. M.; Kim, K.; Lee, B. K.; Lee, S.; Kang, S. K.; Lee, C.; Lee, J. S. et al. Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res. 2018, 11, 3529–3536.

    Article  Google Scholar 

  35. Zhu, F.; Lin, X. Y.; Liu, P.; Jiang, K. L.; Wei, Y.; Wu, Y.; Wang, J. P.; Fan, S. S. Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. Nano Res. 2014, 7, 553–560.

    Article  Google Scholar 

  36. Lee, J. U.; Yoon, D.; Cheong, H. Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett. 2012, 12, 4444–4448.

    Article  Google Scholar 

  37. Politano, A.; Chiarello, G. Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res. 2015, 8, 1847–1856.

    Article  Google Scholar 

  38. Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 2010, 329, 544–547.

    Article  Google Scholar 

  39. Low, T.; Guinea, F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 2010, 10, 3551–3554.

    Article  Google Scholar 

  40. Kim, K.; Lee, Z.; Malon, B. D.; Chan, K. T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (No. 21574086), Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), Shenzhen Sci & Tech research grant (No. ZDSYS201507141105130), Shenzhen City Science and Technology Plan Project (No. JCYJ20160520171103239). R. U. R. S. would like to thank the National Natural Science Foundation of China (No. 11850410427) and Postdoctoral Science Foundation of China (No. 2016M592531) of financial support for present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Electronic supplementary material

12274_2018_2186_MOESM1_ESM.pdf

Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R.U.R., Galluzzi, M., García-Peñas, A. et al. Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics. Nano Res. 12, 101–107 (2019). https://doi.org/10.1007/s12274-018-2186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2186-6

Keywords

Navigation