Skip to main content
Log in

Facile preparation of unique three-dimensional (3D) α-MnO2/MWCNTs macroporous hybrid as the high-performance cathode of rechargeable Li-O2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Undoubtedly, there remains an urgent prerequisite to achieve significant advances in both the specific capacity and cyclability of Li-O2 batteries for their practical application. In this work, a series of unique three-dimensional (3D) α-MnO2/MWCNTs hybrids are successfully prepared using a facile lyophilization method and investigated as the cathode of Li-O2 batteries. Thereinto, cross-linked α-MnO2/MWCNTs nanocomposites are first synthesized via a modified chemical route. Results demonstrate that MnO2 nanorods in the nanocomposites have a length of 100–400 nm and a diameter ranging from 5 to 10 nm, and more attractively, the as-lyophilized 3D MnO2/MWCNTs hybrids is uniquely constructed with large amounts of interconnected macroporous channels. The Li-O2 battery with the 3D macroporous hybrid cathode that has a mass percentage of 50% of α-MnO2 delivers a high discharge specific capacity of 8,643 mAh·g−1 at 100 mA·g−1, and maintains over 90 cycles before the discharge voltage drops to 2.0 V under a controlled specific capacity of 1,000 mAh·g−1. It is observed that when being recharged, the product of toroidal Li2O2 particles disappears and electrode surfaces are well recovered, thus confirming a good reversibility. The excellent performance of Li-O2 battery with the 3D α-MnO2/MWCNTs macroporous hybrid cathode is ascribed to a synergistic combination between the unique macroporous architecture and highly efficient bi-functional α-MnO2/MWCNTs electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

    Article  Google Scholar 

  2. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

    Article  Google Scholar 

  3. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  4. Cheng, F. Y.; Chen, J. Lithium-air batteries: Something from nothing. Nat. Chem. 2012, 4, 962–963.

    Article  Google Scholar 

  5. Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, in press, DOI: 10.1007/s40843-018-9324-0.

    Google Scholar 

  6. Park, M.; Sun, H.; Lee, H.; Lee, J.; Cho, J. Lithium-air batteries: Survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2012, 2, 780–800.

    Article  Google Scholar 

  7. Kwabi, D. G.; Ortiz-Vitoriano, N.; Freunberger, S. A.; Chen, Y. H.; Imanishi, N.; Bruce, P. G.; Shao-Horn, Y. Materials challenges in rechargeable lithium-air batteries. MRS Bull. 2014, 39, 443–452.

    Article  Google Scholar 

  8. McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C. Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett. 2012, 3, 3043–3047.

    Article  Google Scholar 

  9. Lu, Y.-C.; Kwabi, D. G.; Yao, K. P.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 2011, 4, 2999–3007.

    Article  Google Scholar 

  10. Radin, M. D.; Rodriguez, J. F.; Tian, F.; Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 2012, 134, 1093–1103.

    Article  Google Scholar 

  11. Wang, J. J.; Li, Y. L.; Sun, X. L. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2013, 2, 443–467.

    Article  Google Scholar 

  12. Wang, Y.; Cho, S. C. Analysis of air cathode performance for lithium-air batteries. J. Electrochem. Soc. 2013, 160, A1847–A1855.

    Article  Google Scholar 

  13. Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.

    Article  Google Scholar 

  14. Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

    Article  Google Scholar 

  15. Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987–1004.

    Article  Google Scholar 

  16. Lu, Y.-C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

    Article  Google Scholar 

  17. Lu, Y. C.; Gasteiger, H. A.; Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J. Am. Chem. Soc. 2011, 133, 19048–19051.

    Article  Google Scholar 

  18. Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

    Article  Google Scholar 

  19. Jung, H. G.; Jeong, Y. S.; Park, J. B.; Sun, Y.-K.; Scrosati, B.; Lee, Y. J. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 2013, 7, 3532–3539.

    Article  Google Scholar 

  20. Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H. et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

    Article  Google Scholar 

  21. Park, J.; Jun, Y. S.; Lee, W. R.; Gerbec, J. A.; See, K. A.; Stucky, G. D. Bimodal mesoporous titanium nitride/carbon microfibers as efficient and stable electrocatalysts for Li-O2 batteries. Chem. Mater. 2013, 25, 3779–3781.

    Article  Google Scholar 

  22. Kwak, W. J.; Lau, K. C.; Shin, C. D.; Amine, K.; Curtiss, L. A.; Sun, Y. K. A Mo2C/Carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 2015, 9, 4129–4137.

    Article  Google Scholar 

  23. Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L. et al. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in lithium-O2 batteries. J. Phys. Chem. C 2013, 117, 858–865.

    Article  Google Scholar 

  24. Li, Q.; Xu, P.; Zhang, B.; Tsai, H.; Wang, J.; Wang, H. L.; Wu, G. One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries. Chem. Commun. 2013, 49, 10838–10840.

    Article  Google Scholar 

  25. Zhang, J.; Lyu, Z.; Zhang, F.; Wang, L. J.; Xiao, P.; Yuan, K. D.; Lai, M.; Chen, W. Facile synthesis of hierarchical porous Mn3O4 nanoboxes as efficient cathode catalysts for Li-O2 batteries. J. Mater. Chem. A 2016, 4, 6350–6356.

    Article  Google Scholar 

  26. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui, Y.; Dai, H. J. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 2012, 5, 7931–7935.

    Article  Google Scholar 

  27. Cao, Y.; Cai, S. R.; Fan, S. C.; Hu, W. Q.; Zheng, M. S.; Dong, Q. F. Reduced graphene oxide anchoring CoFe2O4 nanoparticles as an effective catalyst for non-aqueous lithium-oxygen batteries. Faraday Discuss. 2014, 172, 215–221.

    Article  Google Scholar 

  28. Yang, Y.; Shi, M.; Li, Y. S.; Fu, Z. W. MnO2-graphene composite air electrode for rechargeable Li-air batteries. J. Electrochem. Soc. 2012, 159, A1917–A1921.

    Article  Google Scholar 

  29. Liu, S. Y.; Zhu, Y. G.; Xie, J.; Huo, Y.; Yang, H. Y.; Zhu, T. J.; Cao, G. S.; Zhao, X. B.; Zhang, S. C. Direct growth of flower-like α-MnO2 on threedimensional graphene for high-performance rechargeable Li-O2 batteries. Adv. Energy Mater. 2014, 4, 1301960.

    Article  Google Scholar 

  30. Song, K.; Jung, J.; Heo, Y. U.; Lee, Y. C.; Cho, K.; Kang, Y. M. α-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air batteries through tailored surface arrangement. Phys. Chem. Chem. Phys. 2013, 15, 20075.

    Article  Google Scholar 

  31. Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. 2008, 120, 4597–4600.

    Article  Google Scholar 

  32. Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765–9768.

    Article  Google Scholar 

  33. Salehi, M.; Shariatinia, Z. An optimization of MnO2 amount in CNT-MnO2 nanocomposite as a high rate cathode catalyst for the rechargeable Li-O2 batteries. Electrochim. Acta 2016, 188, 428–440.

    Article  Google Scholar 

  34. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  Google Scholar 

  35. Yang, X. H.; He, P.; Xia, Y. Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 2009, 11, 1127–1130.

    Article  Google Scholar 

  36. Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011, 11, 5071–5078.

    Article  Google Scholar 

  37. Chen, S.; Zhu, J. W.; Han, Q. F.; Zheng, Z. J.; Yang, Y.; Wang, X. Shapecontrolled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des. 2009, 9, 4356–4361.

    Article  Google Scholar 

  38. Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.

    Article  Google Scholar 

  39. Lim, H. D.; Park, K. Y.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.; Kim, Y. H.; Lima, M. D.; Robles, R. O.; Lepró, X. et al. Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv. Mater. 2013, 25, 1348–1352.

    Article  Google Scholar 

  40. Tu, Y. C.; Li, H. B.; Deng, D. H.; Xiao, J. P.; Cui, X. J.; Ding, D.; Chen, M. S.; Bao, X. H. Low charge overpotential of lithium-oxygen batteries with metallic Co encapsulated in single-layer graphene shell as the catalyst. Nano Energy 2016, 30, 877–884.

    Article  Google Scholar 

  41. McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshoj, J. S.; Norskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.

    Article  Google Scholar 

  42. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Article  Google Scholar 

  43. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 2013, 12, 1050–1056.

    Article  Google Scholar 

  44. Lau, S.; Archer, L. A. Nucleation and growth of lithium peroxide in the Li-O2 battery. Nano Lett. 2015, 15, 5995–6002.

    Article  Google Scholar 

  45. Yang, C. Z.; Wong, R. A.; Hong, M. S.; Yamanaka, K.; Ohta, T.; Byon, H. R. Unexpected Li2O2 film growth on carbon nanotube electrodes with CeO2 nanoparticles in Li-O2 batteries. Nano Lett. 2016, 16, 2969–2974.

    Article  Google Scholar 

  46. Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 2015, 7, 50–56.

    Article  Google Scholar 

  47. Zhong, L.; Mitchell, R. R.; Liu, Y.; Gallant, B. M.; Thompson, C. V.; Huang, J. Y.; Mao, S. X.; Shao-Horn, Y. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett. 2013, 13, 2209–2214.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973) (Nos. 2014CB932300 and 2014CB932303), the National Key Research and Development Program of China (No. 2016YFB0101201), and the National Natural Science Foundation of China (Nos. 21533005 and 21503134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Wu, A., Xia, G. et al. Facile preparation of unique three-dimensional (3D) α-MnO2/MWCNTs macroporous hybrid as the high-performance cathode of rechargeable Li-O2 batteries. Nano Res. 12, 69–75 (2019). https://doi.org/10.1007/s12274-018-2182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2182-x

Keywords

Navigation