Skip to main content
Log in

Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal–air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene–graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  Google Scholar 

  2. Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

    Article  Google Scholar 

  3. Gong, Y. J.; Fei, H. L.; Zou, X. L.; Zhou, W.; Yang, S. B.; Ye, G. L.; Liu, Z.; Peng, Z. W.; Lou, J.; Vajtai, R. et al. Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction. Chem. Mater. 2015, 27, 1181–1186.

    Article  Google Scholar 

  4. Hu, C. G.; Dai, L. M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 2017, 29, 1604942.

    Article  Google Scholar 

  5. Chen, P.; Wang, L. K.; Wang, G.; Gao, M. R.; Ge, J.; Yuan, W. J.; Shen, Y. H.; Xie, A. J.; Yu, S. H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 4095–4103.

    Article  Google Scholar 

  6. Wu, H.; Geng, J.; Ge, H. T.; Guo, Z. Y.; Wang, Y. G.; Zheng, G. F. Eggderived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts. Adv. Energy Mater. 2016, 6, 1600794.

    Article  Google Scholar 

  7. Zhu, H.; Yin, J.; Wang, X. L.; Wang, H. Y.; Yang, X. R. Microorganismderived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater. 2013, 23, 1305–1312.

    Article  Google Scholar 

  8. Mondal, D.; Sharma, M.; Wang, C. H.; Lin, Y. C.; Huang, H. C.; Saha, A.; Nataraj, S. K.; Prasad, K. Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chem. 2016, 18, 2819–2826.

    Article  Google Scholar 

  9. Zheng, Y. C.; Li, Z. Q.; Xu, J.; Wang, T. L.; Liu, X.; Duan, X. H.; Ma, Y. J.; Zhou, Y.; Pei, C. H. Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 2016, 20, 94–107.

    Article  Google Scholar 

  10. Peng, W. H.; Zhu, S. M.; Wang, W. L.; Zhang, W.; Gu, J. J.; Hu, X. B.; Zhang, D.; Chen, Z. X. 3D network magnetophotonic crystals fabricated on Morpho butterfly wing templates. Adv. Funct. Mater. 2012, 22, 2072–2080.

    Article  Google Scholar 

  11. Han, Z. W.; Mu, Z. Z.; Li, B.; Wang, Z.; Zhang, J. Q.; Niu, S. C.; Ren, L. Q. Active antifogging property of monolayer SiO2 film with bioinspired multiscale hierarchical pagoda structures. ACS Nano 2016, 10, 8591–8602.

    Article  Google Scholar 

  12. Huo, Y. J.; Peng, X. Y.; Liu, X. J.; Li, H. Y.; Luo, J. High selectivity towards C2H4 production over Cu particles supported by butterfly-wing-derived carbon frameworks. ACS Appl. Mater. Interfaces 2018, 10, 12618–12625.

    Article  Google Scholar 

  13. Xue, Y. H.; Ding, Y.; Niu, J. B.; Xia, Z. H.; Roy, A.; Chen, H.; Qu, J.; Wang, Z. L.; Dai, L. M. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 2015, 1, e1400198.

    Article  Google Scholar 

  14. Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Dislocation-driven deformations in graphene. Science 2012, 337, 209–212.

    Article  Google Scholar 

  15. Zhao, J.; Deng, Q. M.; Bachmatiuk, A.; Sandeep, G.; Popov, A.; Eckert, J.; Rümmeli, M. H. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 2014, 343, 1228–1232.

    Article  Google Scholar 

  16. Luo, J.; Tian, P.; Pan, C. T.; Robertson, A. W.; Warner, J. H.; Hill, E. W.; Briggs, G. A. D. Ultralow secondary electron emission of graphene. ACS Nano 2011, 5, 1047–1055.

    Article  Google Scholar 

  17. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  18. Wu, J. B.; Zhang, X.; Ijäs, M.; Han, W. P.; Qiao, X. F.; Li, X. L.; Jiang, D. S.; Ferrari, A. C.; Tan, P. H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

    Article  Google Scholar 

  19. Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

    Article  Google Scholar 

  20. Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

    Article  Google Scholar 

  21. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  22. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  23. Yan, X. X.; Tang, Z. K.; Xu, X.; Fang, F.; Song, D. S.; Liu, J. G.; Lu, S. F.; Liu, L. M.; Luo, J.; Zhu, J. Electrocatalysis enhancement of iron-based catalysts induced by synergy of methanol and oxygen-containing groups. Nano Energy 2016, 21, 265–275.

    Article  Google Scholar 

  24. Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528–19531.

    Article  Google Scholar 

  25. He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 6, 1856–1865.

    Article  Google Scholar 

  26. Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/ nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

    Article  Google Scholar 

  27. Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

    Article  Google Scholar 

  28. Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

    Article  Google Scholar 

  29. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

    Article  Google Scholar 

  30. Chen, J. H.; Lee, Y. C.; Tang, M. T.; Song, Y. F. X-ray tomography and chemical imaging within butterfly wing scales. AIP Conf. Proc. 2007, 879, 1940–1943.

    Article  Google Scholar 

  31. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  32. Cui, C. J.; Qian, W. Z.; Yu, Y. T.; Kong, C. Y.; Yu, B.; Xiang, L.; Wei, F. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 2014, 136, 2256–2259.

    Article  Google Scholar 

  33. Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439.

    Article  Google Scholar 

  34. Xiang, R.; Luo, G. H.; Qian, W. Z.; Zhang, Q.; Wang, Y.; Wei, F.; Li, Q.; Cao, A. Y. Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Adv. Mater. 2007, 19, 2360–2363.

    Article  Google Scholar 

  35. Zhu, Y. L.; Zhou, W.; Chen, Y. B.; Yu, J.; Liu, M. L.; Shao, Z. P. A highperformance electrocatalyst for oxygen evolution reaction: LiCo0.8Fe0.2O2. Adv. Mater. 2015, 27, 7150–7155.

    Article  Google Scholar 

  36. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  37. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

    Article  Google Scholar 

  38. Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377.

    Article  Google Scholar 

  39. Lv, Q. Y.; Sun, H. Y.; Li, X. B.; Xiao, J. W.; Xiao, F.; Liu, L. M.; Luo, J.; Wang, S. Ultrahigh capacitive performance of three-dimensional electrode nanomaterials based on α-MnO2 nanocrystallines induced by doping Au through Å-scale channels. Nano Energy 2016, 21, 39–50.

    Article  Google Scholar 

  40. Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2014, 136, 11687–11697.

    Article  Google Scholar 

  41. Wang, G. W.; Guan, J. X.; Xiao, L.; Huang, B.; Wu, N.; Lu, J. T.; Zhuang, L. Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy 2016, 29, 268–274.

    Article  Google Scholar 

  42. Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L. J.; Zhu, Y. M.; Adzic, R. R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 2014, 5, 5185.

    Article  Google Scholar 

  43. Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.

    Article  Google Scholar 

  44. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  Google Scholar 

  45. Zhao, D.; Yi, B. L.; Zhang, H. M.; Yu, H. M.; Wang, L.; Ma, Y. W.; Xing, D. M. Cesium substituted 12-tungstophosphoric (CsxH3-xPW12O40) loaded on ceria-degradation mitigation in polymer electrolyte membranes. J. Power Sources 2009, 190, 301–306.

    Article  Google Scholar 

  46. Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N-and O-doped mesoporous carbons. J. Am. Chem. Soc. 2013, 135, 7823–7826.

    Article  Google Scholar 

  47. Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijun Liu, Xiaoxing Ke or Jun Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, L., Li, L. et al. Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Res. 12, 33–39 (2019). https://doi.org/10.1007/s12274-018-2172-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2172-z

Keywords

Navigation