Skip to main content
Log in

Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by high-energy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilhelm, S. Perspectives for upconverting nanoparticles. ACS Nano 2017, 11, 10644–10653.

    Article  Google Scholar 

  2. Pichaandi, J.; Boyer, J. C.; Delaney, K. R.; van Veggel, F. C. J. M. Two-photon upconversion laser (scanning and widefield) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging. J. Phys. Chem. C 2011, 115, 19054–19064.

    Article  Google Scholar 

  3. Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125–3129.

    Article  Google Scholar 

  4. Zhan, Q. Q.; Qian, J.; Liang, H. J.; Somesfalean, G.; Wang, D.; He, S. L.; Zhang, Z. G.; Andersson-Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 2011, 5, 3744–3757.

    Article  Google Scholar 

  5. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

    Article  Google Scholar 

  6. Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.

    Article  Google Scholar 

  7. Xu, C. T.; Zhan, Q. Q.; Liu, H. C.; Somesfalean, G.; Qian, J.; He, S. L.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663–697.

    Article  Google Scholar 

  8. Resch-Genger, U.; Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles - Part I: Routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 2017, 409, 5855–5874.

    Article  Google Scholar 

  9. Gorris, H. H.; Resch-Genger, U. Perspectives and challenges of photon-upconversion nanoparticles - Part II: Bioanalytical applications. Anal. Bioanal. Chem. 2017, 409, 5875–5890.

    Article  Google Scholar 

  10. Menyuk, N.; Dwight, K.; Pierce, J. W. NaYF4:Yb,Er—An efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21, 159–161.

    Article  Google Scholar 

  11. Pierce, J. W.; Delaney, E. J.; Dwight, K.; Menyuk, N. Preparation of infrared to visible upconversion phosphors based on hexagonal NaYF4. Abstr. Pap. Am. Chem. Soc. 1972, 164, 18.

    Google Scholar 

  12. Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241–7247.

    Article  Google Scholar 

  13. Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lu, W.; Zhao, H. F. Importance of suppression of Yb3+ de-excitation to upconversion enhancement in β-NaYF4: Yb3+/Er3+@β-NaYF4 sandwiched structure nanocrystals. Inorg. Chem. 2015, 54, 3921–3928.

    Article  Google Scholar 

  14. Hossan, M. Y.; Hor, A.; Luu, Q.; Smith, S. J.; May, P. S.; Berry, M. T. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4:Yb3+,Er3+ core and core-shell nanocrystals. J. Phys. Chem. C 2017, 121, 16592–16606.

    Article  Google Scholar 

  15. Chen, G. Y.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z. P.; Song, J.; Pandey, R. K.; Agren, H.; Prasad, P. N. et al. (a-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280–8287.

    Article  Google Scholar 

  16. Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Würth, C.; Christ, S.; Resch-Genger, U.; Schaferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746–1157.

    Article  Google Scholar 

  17. Scatena, L. F.; Brown, M. G.; Richmond, G. L. Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects. Science 2001, 292, 908–912.

    Article  Google Scholar 

  18. Hyppänen, I.; Höysniemi, N.; Arppe, R.; Schäferling, M.; Soukka, T. Environmental impact on the excitation path of the red upconversion emission of nanocrystalline NaYF4: Yb3+,Er3+. J. Phys. Chem. C 2017, 121, 6924–6929.

    Article  Google Scholar 

  19. Xue, X. J.; Uechi, S.; Tiwari, R. N.; Duan, Z. C.; Liao, M. S.; Yoshimura, M.; Suzuki, T.; Ohishi, Y. Size-dependent upconversion luminescence and quenching mechanism of LiYF4:Er3+/Yb3+ nanocrystals with oleate ligand adsorbed. Opt. Mater. Express 2013, 3, 989–999.

    Article  Google Scholar 

  20. Muhr, V.; Würth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch-Genger, U.; Hirsch, T. Particle-size-dependent Förster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal. Chem. 2017, 89, 4868–4874.

    Article  Google Scholar 

  21. Lim, S. F.; Ryu, W. S.; Austin, R. H. Particle size dependence of the dynamic photophysical properties of NaYF4: Yb, Er nanocrystals. Opt. Express 2010, 18, 2309–2316.

    Article  Google Scholar 

  22. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

    Article  Google Scholar 

  23. Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305.

    Article  Google Scholar 

  24. Zhao, J. B.; Lu, Z. D.; Yin, Y. D.; McRae, C.; Piper, J. A.; Dawes, J. M.; Jin, D. Y.; Goldys, E. M. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: Role of nanocrystal size. Nanoscale 2013, 5, 944–952.

    Article  Google Scholar 

  25. Yuan, D.; Tan, M. C.; Riman, R. E.; Chow, G. M. Comprehensive study on the size effects of the optical properties of NaYF4:Yb,Er nanocrystals. J. Phys. Chem. C 2013, 117, 13297–13304.

    Article  Google Scholar 

  26. Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-to-visible upconversion mechanism in β-NaYF4:Yb3+,Er3+. J. Phys. Chem. Lett. 2014, 5, 36–42.

    Article  Google Scholar 

  27. Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.

    Article  Google Scholar 

  28. Jung, T.; Jo, H. L.; Nam, S. H.; Yoo, B.; Cho, Y.; Kim, J.; Kim, H. M.; Hyeon, T.; Suh, Y. D.; Lee, H. et al. The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4: Yb3+, Er3+. Phys. Chem. Chem. Phys. 2015, 17, 13201–13205.

    Article  Google Scholar 

  29. Kaiser, M.; Wurth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles-measurements and simulations. Nanoscale 2017, 9, 10051–10058.

    Article  Google Scholar 

  30. Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch-Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283–4294.

    Article  Google Scholar 

  31. Rabouw, F. T.; Meijerink, A. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells. J. Phys. Chem. C 2015, 119, 2364–2370.

    Google Scholar 

  32. Martín-Rodríguez, R.; Rabouw, F. T.; Trevisani, M.; Bettinelli, M.; Meijerink, A. Upconversion dynamics in Er3+-doped Gd2O2S: Influence of excitation power, Er3+ concentration, and defects. Adv. Opt. Mater. 2015, 3, 558–567.

    Article  Google Scholar 

  33. Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922–4928.

    Article  Google Scholar 

  34. Hudry, D.; Busko, D.; Popescu, R.; Gerthsen, D.; Abeykoon, A. M. M.; Kubel, C.; Bergfeldt, T.; Richards, B. S. Direct evidence of significant cation intermixing in upconverting core@shell nanocrystals: Toward a new crystallochemical model. Chem. Mater. 2017, 29, 9238–9246.

    Article  Google Scholar 

  35. Klier, D. T.; Kumke, M. U. Upconversion luminescence properties of NaYF4:Yb:Er nanoparticles codoped with Gd3+. J. Phys. Chem. C 2015, 119, 3363–3373.

    Article  Google Scholar 

  36. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

    Article  Google Scholar 

  37. Chen, F.; Bu, W. B.; Zhang, S. J.; Liu, X. H.; Liu, J. N.; Xing, H. Y.; Xiao, Q. F.; Zhou, L. P.; Peng, W. J.; Wang, L. Z. et al. Positive and negative lattice shielding effects Co-existing in Gd (III) ion doped bifunctional upconversion nanoprobes. Adv. Funct. Mater. 2011, 21, 4285–4294.

    Article  Google Scholar 

  38. Wilhelm, S.; Kaiser, M.; Würth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403–1410.

    Article  Google Scholar 

  39. Päkkila, H.; Yliharsilä, M.; Lahtinen, S.; Hattara, L.; Salminen, N.; Arppe, R.; Lastusaari, M.; Saviranta, P.; Soukka, T. Quantitative multianalyte microarray immunoassay utilizing upconverting phosphor technology. Anal. Chem. 2012, 84, 8628–8634.

    Article  Google Scholar 

  40. Wilhelm, S.; del Barrio, M.; Heiland, J.; Himmelstoss, S. F.; Galbán, J.; Wolfbeis, O. S.; Hirsch, T. Spectrally matched upconverting luminescent nanoparticles for monitoring enzymatic reactions. ACS Appl. Mater. Interfaces 2014, 6, 15427–15433.

    Article  Google Scholar 

  41. Wilhelm, S.; Hirsch, T.; Patterson, W. M.; Scheucher, E.; Mayr, T.; Wolfbeis, O. S. Multicolor upconversion nanoparticles for protein conjugation. Theranostics 2013, 3, 239–248.

    Article  Google Scholar 

  42. Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734.

    Article  Google Scholar 

  43. Liu, H. C.; Xu, C. T.; Lindgren, D.; Xie, H. Y.; Thomas, D.; Gundlach, C.; Andersson-Engels, S. Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale 2013, 5, 4770–4775.

    Article  Google Scholar 

  44. Shan, J. N.; Uddi, M.; Yao, N.; Ju, Y. G. Anomalous Raman scattering of colloidal Yb3+,Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence. Adv. Funct. Mater. 2010, 20, 3530–3537.

    Article  Google Scholar 

  45. Wang, Y.; Deng, R. R.; Xie, X. J.; Huang, L.; Liu, X. G. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution. Nanoscale 2016, 8, 6666–6673.

    Article  Google Scholar 

  46. Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011, 32, 2959–2968.

    Article  Google Scholar 

  47. Ju, Q.; Luo, W. Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Poly (acrylic acid)-capped lanthanide-doped bafcl nanocrystals: Synthesis and optical properties. Nanoscale 2010, 2, 1208–1212.

    Article  Google Scholar 

  48. Guan, Y.; Zhang, Y. J.; Zhou, T.; Zhou, S. Q. Stability of hydrogen-bonded hydroxypropylcellulose/poly(acrylic acid) microcapsules in aqueous solutions. Soft Matter 2009, 5, 842–849.

    Article  Google Scholar 

  49. Liu, F.; Ma, E.; Chen, D. Q.; Wang, Y. S.; Yu, Y. L.; Huang, P. Infrared luminescence of transparent glass ceramic containing Er3+:NaYF4 nanocrystals. J. Alloys Compounds 2009, 467, 317–321.

    Article  Google Scholar 

  50. Ostrowski, A. D.; Chan, E. M.; Gargas, D. J.; Katz, E. M.; Han, G.; Schuck, P. J.; Milliron, D. J.; Cohen, B. E. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 2012, 6, 2686–2692.

    Article  Google Scholar 

  51. Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

    Article  Google Scholar 

  52. Li, X. M.; Shen, D. K.; Yang, J. P.; Yao, C.; Che, R. C.; Zhang, F.; Zhao, D. Y. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 2013, 25, 106–112.

    Article  Google Scholar 

  53. Mousavi, M.; Thomasson, B.; Li, M.; Kraft, M.; Würth, C.; Resch-Genger, U.; Andersson-Engels, S. Beam-profilecompensated quantum yield measurements of upconverting nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 22016–22022.

    Article  Google Scholar 

  54. Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769.

    Article  Google Scholar 

  55. Würth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch-Genger, U. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal. Chem. 2012, 84, 1345–1352.

    Article  Google Scholar 

  56. Resch-Genger, U.; Bremser, W.; Pfeifer, D.; Spieles, M.; Hoffmann, A.; DeRose, P. C.; Zwinkels, J. C.; Gauthier, F.; Ebert, B.; Taubert, R. D. et al. State-of-the art comparability of corrected emission spectra. 1. Spectral correction with physical transfer standards and spectral fluorescence standards by expert laboratories. Anal. Chem. 2012, 84, 3889–3898.

    Google Scholar 

  57. Ahrar, K.; Gowda, A.; Javadi, S.; Borne, A.; Fox, M.; McNichols, R.; Ahrar, J. U.; Stephens, C.; Stafford, R. J. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J. Vascul. Interv. Radiol. 2010, 21, 555–561.

    Article  Google Scholar 

Download references

Acknowledgements

U. R. G. acknowledges financial support by research grants RE 1203/18-1 (German research council; DFG) and RE 1203/20-1 (project NANOHYPE; DFG and M-Eranet) and M. K. from the Ph.D. program of BAM. Moreover, COST Action CM1403, the European upconversion network from the design of photon-upconverting nanomaterials to (biomedical) applications, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Resch-Genger.

Electronic supplementary material

12274_2018_2159_MOESM1_ESM.pdf

Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, M., Würth, C., Muhr, V. et al. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 11, 6360–6374 (2018). https://doi.org/10.1007/s12274-018-2159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2159-9

Keywords

Navigation