Skip to main content
Log in

Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have attracted enormous attention due to their functional applications in energy storage. In this work, a low-temperature molten-salt chemical exfoliation methodology is developed for producing free-standing 2D mesoporous Si through deintercalation of CaSi2 in excess molten AlCl3 at 195 °C. The average dimension of these sheets is 1.5 μm, and the thickness of a single sheet is approximately 10 nm. The as-prepared 2D Si has a Brunauer–Emmett–Teller surface area of 154 m2·g−1 and an average pore size of 5.87 nm. With this unique structure, the 2D Si exhibits superior Li-storage performance, including a reversible capacity of 2,974 mA·h·g−1 at 0.2 C, reversible capacities of 2,162, 1,947, and 1,527 mA·h·g−1 at 0.8, 2, and 5 C after 200 cycles, and a capacity retention of 357 mA·h·g−1 even at 30 C (90 A·g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  2. Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.

    Article  Google Scholar 

  3. Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

    Article  Google Scholar 

  4. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.

    Article  Google Scholar 

  5. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

    Article  Google Scholar 

  6. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  7. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  Google Scholar 

  8. Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for highperformance lithium-ion batteries. Adv. Mater. 2016, 28, 5696–5704.

    Article  Google Scholar 

  9. Lu, Z. Y.; Zhu, J. X.; Sim, D. H.; Zhou, W. W.; Shi, W. H.; Hng, H. H.; Yan, Q. Y. Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem. Mater. 2011, 23, 5293–5295.

    Article  Google Scholar 

  10. Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cyclelife lithium-ion batteries. Adv. Mater. 2014, 26, 4326–4332.

    Article  Google Scholar 

  11. Wang, X. H.; Sun, L. M.; Hu, X. N.; Susantyoko, R. A.; Zhang, Q. Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 2015, 280, 393–396.

    Article  Google Scholar 

  12. Kim, S. W.; Lee, J.; Sung, J. H.; Seo, D.; Kim, I.; Jo, M. H.; Kwon, B. W.; Choi, W. K.; Choi, H. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions. ACS Nano 2014, 8, 6556–6562.

    Article  Google Scholar 

  13. Huang, X. H.; Zhang, P.; Wu, J. B.; Lin, Y.; Guo, R. Q. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries. Mater. Res. Bull. 2016, 80, 30–35.

    Article  Google Scholar 

  14. Kim, U.; Kim, I.; Park, Y.; Lee, K. Y.; Yim, S. Y.; Park, J. G.; Ahn, H. G.; Park, S. H.; Choi, H. J. Synthesis of Si nanosheets by a chemical vapor deposition process and their blue emissions. ACS Nano 2011, 5, 2176–2181.

    Article  Google Scholar 

  15. Kim, W. S.; Hwa, Y.; Shin, J. H.; Yang, M.; Sohn, H. J.; Hong, S. H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 2014, 6, 4297–4302.

    Article  Google Scholar 

  16. Ryu, J.; Hong, D. K.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843–2851.

    Article  Google Scholar 

  17. Zhuang, J. C.; Xu, X.; Peleckis, G.; Hao, W. C.; Dou, S. X.; Du, Y. Silicene: A promising anode for lithium-ion batteries. Adv. Mater. 2017, 29, 1606716.

    Article  Google Scholar 

  18. Zhao, L. Y.; Dvorak, D. J.; Obrovac, M. N. Layered amorphous silicon as negative electrodes in lithium-ion batteries. J. Power Sources 2016, 332, 290–298.

    Article  Google Scholar 

  19. Fu, R. S.; Zhang, K. L.; Zaccaria, R. P.; Huang, H. R.; Xia, Y. G.; Liu, Z. P. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 2017, 39, 546–553.

    Article  Google Scholar 

  20. Zhang, Z. L.; Wang, Y. H.; Ren, W. F.; Tan, Q. Q.; Chen, Y. F.; Li, H.; Zhong, Z. Y.; Su, F. B. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem., Int. Ed. 2014, 53, 5165–5169.

    Google Scholar 

  21. Terranova, M. L.; Orlanducci, S.; Tamburri, E.; Guglielmotti, V.; Rossi, M. Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 2014, 246, 167–177.

    Article  Google Scholar 

  22. Zhang, M.; Zhang, T. F.; Ma, Y. F.; Chen, Y. S. Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Mater. 2016, 4, 1–14.

    Article  Google Scholar 

  23. Du, F. H.; Wang, K. X.; Chen, J. S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50.

    Article  Google Scholar 

  24. Lin, N.; Zhou, J. B.; Wang, L. B.; Zhu, Y. C.; Qian, Y. T. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 409–414.

    Article  Google Scholar 

  25. Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

    Article  Google Scholar 

  26. Lin, N.; Han, Y.; Wang, L. B.; Zhou, J. B.; Zhou, J.; Zhu, Y. C.; Qian, Y. T. Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries. Angew. Chem., Int. Ed. 2015, 54, 3822–3825.

    Article  Google Scholar 

  27. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

    Article  Google Scholar 

  28. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  Google Scholar 

  29. Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J. M. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393.

    Article  Google Scholar 

  30. Li, B.; Li, S. M.; Xu, J. J.; Yang, S. B. A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances. Energy Environ. Sci. 2016, 9, 2025–2030.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Postdoctoral Program for Innovative Talents (No. BX201600140), China Postdoctoral Science Foundation funded project (No. 2016M600484), the Fundamental Research Funds for the Central Universities (No. WK2060190078), the National Natural Science Fund of China (No. 21701163), and Anhui Provincial Natural Science Foundation (No. 1808085QB25).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Lin or Yitai Qian.

Electronic supplementary material

12274_2018_2153_MOESM1_ESM.pdf

Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhou, J., Li, T. et al. Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Res. 11, 6294–6303 (2018). https://doi.org/10.1007/s12274-018-2153-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2153-2

Keywords

Navigation