Skip to main content
Log in

Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

B cells exert multiple effector functions, and dysfunctions of B cells often lead to initiation and progression of diseases, including autoimmune and inflammatory diseases. Therefore, B cell intervention may be an effective strategy to treat diseases involving B cells. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing system has been widely used for DNA deletion, insertion, and replacement. Nanocarriers have been developed as relatively mature systems and may be applied to deliver the CRISPR-Cas9 system to B cells in vivo. In this study, we created a library of nanoparticles (NPs) with different polyethylene glycol densities and zeta potentials and screened an optimal NP for in vivo B cell targeting. The selected NP could deliver the CRISPR-Cas9 system to B cells and induce Cas9 expression inside the cell environment. Injection of the NP encapsulated with Cas9/gB220 (NPCas9/gB220) into mice could disrupt B220 expression in B cells, suggestive of its applications to intervene the expression of the target molecule in B cells. Moreover, the treatment with NPCas9/gBAFFR could decrease the number of B cells and exert therapeutic effect in rheumatoid arthritis, as B-cell activating factor receptor (BAFFR) is vital for the survival and functions of B cells. In conclusion, we developed a carrier for the delivery of the CRISPR-Cas9 gene editing system for B cell intervention that could be used for the treatment of diseases related to B cell dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Claes, N.; Fraussen, J.; Stinissen, P.; Hupperts, R.; Somers, V. B cells are multifunctional players in multiple sclerosis pathogenesis: Insights from therapeutic interventions. Front. Immunol. 2015, 6, 642.

    Article  Google Scholar 

  2. Rawlings, D. J.; Metzler, G.; Wray-Dutra, M.; Jackson, S. W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 2017, 17, 421–436.

    Article  Google Scholar 

  3. Larche, M.; Akdis, C. A.; Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol. 2006, 6, 761–771.

    Article  Google Scholar 

  4. Honigberg, L. A.; Smith, A. M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z. Y.; Thamm, D. H.; Miller, R. A. et al. The bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 2010, 107, 13075–13080.

    Article  Google Scholar 

  5. Herman, S. E. M.; Gordon, A. L.; Hertlein, E.; Ramanunni, A.; Zhang, X.; Jaglowski, S.; Flynn, J.; Jones, J.; Blum, K. A.; Buggy, J. J. et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011, 117, 6287–6296.

    Article  Google Scholar 

  6. Di Paolo, J. A.; Huang, T.; Balazs, M.; Barbosa, J.; Barck, K. H.; Bravo, B. J.; Carano, R. A. D.; Darrow, J.; Davies, D. R.; DeForge, L. E. et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol. 2011, 7, 41–50.

    Article  Google Scholar 

  7. Pescovitz, M. D.; Greenbaum, C. J.; Krause-Steinrauf, H.; Becker, D. J.; Gitelman, S. E.; Goland, R.; Gottlieb, P. A.; Marks, J. B.; McGee, P. F.; Moran, A. M. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 2009, 361, 2143–2152.

    Article  Google Scholar 

  8. Edwards, J. C. W.; Szczepanski, L.; Szechinski, J.; Filipowicz- Sosnowska, A.; Emery, P.; Close, D. R.; Stevens, R. M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2572–2581.

    Article  Google Scholar 

  9. Kardava, L.; Moir, S.; Wang, W.; Ho, J.; Buckner, C. M.; Posada, J. G.; O’Shea, M. A.; Roby, G.; Chen, J.; Sohn, H. W. et al. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J. Clin. Invest. 2011, 121, 2614–2624.

    Article  Google Scholar 

  10. Doudna, J. A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.

    Article  Google Scholar 

  11. Chu, V. T.; Graf, R.; Wirtz, T.; Weber, T.; Favret, J.; Li, X.; Petsch, K.; Tran, N. T.; Sieweke, M. H.; Berek, C. et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc. Natl. Acad. Sci. USA 2016, 113, 12514–12519.

    Article  Google Scholar 

  12. Cheong, T. C.; Compagno, M.; Chiarle, R. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat. Commun. 2016, 7, 10934.

    Article  Google Scholar 

  13. Pogson, M.; Parola, C.; Kelton, W. J.; Heuberger, P.; Reddy, S. T. Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat. Commun. 2016, 7, 12535.

    Article  Google Scholar 

  14. Wang, H. X.; Li, M. Q.; Lee, C. M.; Chakraborty, S.; Kim, H. W.; Bao, G.; Leong, K. W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874–9906.

    Article  Google Scholar 

  15. Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029–12033.

    Article  Google Scholar 

  16. Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. H. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333.

    Article  Google Scholar 

  17. Li, L.; Song, L. J.; Liu, X. W.; Yang, X.; Li, X.; He, T.; Wang, N.; Yang, S.; Yu, C.; Yin, T. et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 2017, 11, 95–111.

    Article  Google Scholar 

  18. Almeida, J. P.; Lin, A. Y.; Langsner, R. J.; Eckels, P.; Foster, A. E.; Drezek, R. A. In vivo immune cell distribution of gold nanoparticles in naïve and tumor bearing mice. Small 2014, 10, 812–819.

    Article  Google Scholar 

  19. Song, E.; Zhu, P. C.; Lee, S. K.; Chowdhury, D.; Kussman, S.; Dykxhoorn, D. M.; Feng, Y.; Palliser, D.; Weiner, D. B.; Shankar, P. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 2005, 23, 709–717.

    Article  Google Scholar 

  20. McNamara, J. O.; Andrechek, E. R.; Wang, Y.; Viles, K. D.; Rempel, R. E.; Gilboa, E.; Sullenger, B. A.; Giangrande, P. H. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006, 24, 1005–1015.

    Article  Google Scholar 

  21. Rozema, D. B.; Lewis, D. L.; Wakefield, D. H.; Wong, S. C.; Klein, J. J.; Roesch, P. L.; Bertin, S. L.; Reppen, T. W.; Chu, Q. L.; Blokhin, A. V. et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 12982–12987.

    Article  Google Scholar 

  22. Yu, K. T.; Zhou, Y. L.; Li, Y. H.; Sun, X. S.; Sun, F. Y.; Wang, X. M.; Mu, H. Y.; Li, J.; Liu, X. Y.; Teng, L. S. et al. Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles. Biomater. Sci. 2016, 4, 1219–1232.

    Article  Google Scholar 

  23. Davis, M. E.; Zuckerman, J. E.; Choi, C. H.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070.

    Article  Google Scholar 

  24. Lv, M. M.; Li, X.; Huang, Y.; Wang, N.; Zhu, X. Y.; Sun, J. Inhibition of fibrous dysplasia via blocking Gsa with suramin sodium loaded with an alendronate-conjugated polymeric drug delivery system. Biomater. Sci. 2016, 4, 1113–1122.

    Article  Google Scholar 

  25. Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J. W.; Phillips, B.; Carter, M. B. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particlesupported lipid bilayers. Nat. Mater. 2011, 10, 389–397.

    Article  Google Scholar 

  26. Keles, E.; Song, Y.; Du, D.; Dong, W. J.; Lin, Y. H. Recent progress in nanomaterials for gene delivery applications. Biomater. Sci. 2016, 4, 1291–1309.

    Article  Google Scholar 

  27. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.

    Article  Google Scholar 

  28. Voigt, J.; Christensen, J.; Shastri, V. P. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc. Natl. Acad. Sci. USA 2014, 111, 2942–2947.

    Article  Google Scholar 

  29. Carven, G. J.; Chitta, S.; Hilgert, I.; Rushe, M. M.; Baggio, R. F.; Palmer, M.; Arenas, J. E.; Strominger, J. L.; Horejsi, V.; Santambrogio, L. et al. Monoclonal antibodies specific for the empty conformation of HLA-DR1 reveal aspects of the conformational change associated with peptide binding. J. Biol. Chem. 2004, 279, 16561–16570.

    Article  Google Scholar 

  30. De Koker, S.; Cui, J. W.; Vanparijs, N.; Albertazzi, L.; Grooten, J.; Caruso, F.; De Geest, B. G. Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery. Angew. Chem., Int. Ed. 2016, 55, 1334–1339.

    Article  Google Scholar 

  31. Mueller, S. N.; Tian, S. M.; DeSimone, J. M. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol. Pharmaceutics 2015, 12, 1356–1365.

    Article  Google Scholar 

  32. Chang, T. Z.; Stadmiller, S. S.; Staskevicius, E.; Champion, J. A. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomater. Sci. 2017, 5, 223–233.

    Article  Google Scholar 

  33. Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 2011, 156, 203–211.

    Article  Google Scholar 

  34. Zhu, K. J.; Lin, X. Z.; Yang, S. L. Preparation, characterization, and properties of polylactide (PLA) poly(ethylene glycol) (PEG) copolymers: A potential-drug carrier. J. Appl. Poly. Sci. 1990, 39, 1–9.

    Article  Google Scholar 

  35. Du, X. J.; Wang, J. L.; Liu, W. W.; Yang, J. X.; Sun, C. Y.; Sun, R.; Li, H. J.; Shen, S.; Luo, Y. L.; Ye, X. D. et al. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 2015, 69, 1–11.

    Article  Google Scholar 

  36. Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.

    Article  Google Scholar 

  37. Mackay, F.; Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9, 491–502.

    Article  Google Scholar 

  38. Edwards, J. C. W.; Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 2006, 6, 394–403.

    Article  Google Scholar 

  39. Sanz, I.; Lee, F. E. H. B cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 2010, 6, 326–337.

    Article  Google Scholar 

  40. Mariño, E.; Silveira, P. A.; Stolp, J.; Grey, S. T. B celldirected therapies in type 1 diabetes. Trends Immunol. 2011, 32, 287–294.

    Article  Google Scholar 

  41. Brightbill, H. D.; Jeet, S.; Lin, Z. H.; Yan, D. H.; Zhou, M. J.; Tan, M.; Nguyen, A.; Yeh, S.; Delarosa, D.; Leong, S. R. et al. Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J. Clin. Invest. 2010, 120, 2218–2229.

    Article  Google Scholar 

  42. Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.

    Article  Google Scholar 

  43. Morvan, M. G.; Lanier, L. L. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer 2016, 16, 7–19.

    Article  Google Scholar 

  44. Talukdar, S.; Oh, D. Y.; Bandyopadhyay, G.; Li, D. M.; Xu, J. F.; McNelis, J.; Lu, M.; Li, P. P.; Yan, Q. Y.; Zhu, Y. M. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 2012, 18, 1407–1412.

    Article  Google Scholar 

  45. Li, M.; Sun, R.; Xu, L.; Yin, W. W.; Chen, Y. Y.; Zheng, X. D.; Lian, Z. X.; Wei, H. M.; Tian, Z. G. Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B core antigen-TLR2 interactions in mice. J. Immunol. 2015, 195, 3100–3109.

    Article  Google Scholar 

  46. Fugger, L.; Friese, M. A.; Bell, J. I. From genes to function: The next challenge to understanding multiple sclerosis. Nat. Rev. Immunol. 2009, 9, 408–417.

    Article  Google Scholar 

  47. Lehuen, A.; Diana, J.; Zaccone, P.; Cooke, A. Immune cell crosstalk in type 1 diabetes. Nat. Rev. Immunol. 2010, 10, 501–513.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0205600), the National Basic Research Program of China (No. 2015CB932100), the National Natural Science Foundation of China (Nos. 551390482 and 51633008), the China Postdoctoral Science Foundation (Nos. 2016M590582 and 2018M630953), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong-Fei Xu or Jun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Fan, YN., Chen, ZY. et al. Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Res. 11, 6270–6282 (2018). https://doi.org/10.1007/s12274-018-2150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2150-5

Keywords

Navigation