Skip to main content
Log in

Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization

Nano Research Aims and scope Submit manuscript

Abstract

We developed a general and effective strategy to afford rod-like [Au25(SPh)5(PPh3)10X2]X2 (X = Cl/Br) nanoclusters, capped by conjugated delocalized pπ electron mediated ligands. The detailed atomic structure of these materials was resolved by synchrotron radiation X-ray diffraction (SRXRD) combined with electrospray ionization mass spectrometry (ESI-MS) and UV–vis analyses. The Au17(SR)3(PPh3)6X2minimum asymmetric unit, with exposed Au atoms at the center, can serve as an important model to understand the transformation of homogold nanoclusters into alloy nanoclusters. The conjugated delocalized pπ electrons of the thiolate ligands can effectively tune the electronic properties of the Au25 kernel, as qualitatively evidenced by the energy gaps measured by UV–vis experiments and density functional theory (DFT) calculations. The delocalized electrons distinctly flow to the orbitals of the Au25 kernel via the S atoms of the aromatic thiolates. The ESI-MS analysis indicates that Au3 clusters are formed during the etching reactions, which provide an opportunity to gain insight into the intriguing conversion pathway of the Aun(PPh3)mXy precursor to the final Au25 nanorods. Finally, the thiophenol-protected Au25 nanorods, immobilized on activated carbon, show good catalytic activity in the aerobic oxidation of glucose to gluconic acid (74% glucose conversion and 100% selectivity for gluconic acid), much higher than that of the aliphatic Au25 analogue. The Au25(SPh)5(PPh3)10X2 catalyst yields a turnover frequency (TOF) of 13.5 s–1, higher than that of commercial catalysts such as Pd/activated carbon (AC) and Pd-Bi/AC. The insight obtained from this study will support the development and design of efficient nanogold catalysts for special oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, J. W.; Zhou, Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J. L.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res., in press, DOI: 10.1007/s12274-017-1935-2.

  2. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  Google Scholar 

  3. Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.

    Article  Google Scholar 

  4. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  Google Scholar 

  5. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    Article  Google Scholar 

  6. Fang, J.; Zhang, B.; Yao, Q. F.; Yang, Y.; Xie, J. P.; Yan, N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord. Chem. Rev. 2016, 322, 1–29.

    Article  Google Scholar 

  7. Sementa, L.; Barcaro, G.; Dass, A.; Stener, M.; Fortunelli, A. Designing ligand-enhanced optical absorption of thiolated gold nanoclusters. Chem. Commun. 2015, 51, 7935–7938.

    Article  Google Scholar 

  8. Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev., in press, DOI: 10.1016/ j.ccr.2017.10.025.

  9. Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2–18): A stepping stone to cluster-assembled materials. J. Phys. Chem. C 2007, 111, 7845–7847.

    Article  Google Scholar 

  10. Qian, H. F.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. C. Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg. Chem. 2011, 50, 10735–10739.

    Article  Google Scholar 

  11. Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

    Article  Google Scholar 

  12. Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

    Article  Google Scholar 

  13. Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. Largescale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J. Am. Chem. Soc. 2005, 127, 13464–13465.

    Article  Google Scholar 

  14. Lin, J. Z.; Li, W. L.; Liu, C.; Huang, P.; Zhu, M. Z.; Ge, Q. J.; Li, G. One-phase controlled synthesis of Au25 nanospheres and nanorods from 1.3 nm Au:PPh3 nanoparticles: The ligand effects. Nanoscale 2015, 7, 13663–13670.

    Article  Google Scholar 

  15. Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. K. PPh3: Converts thiolated gold nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+. Acta Phys. -Chim. Sin. 2018, 34, 792–798.

    Google Scholar 

  16. Li, G.; Qian, H. F.; Jin, R. C. Gold nanocluster-catalyzed selective oxidation of sulfide to sulfoxide. Nanoscale 2012, 4, 6714–6717.

    Article  Google Scholar 

  17. Kenzler, S.; Schrenk, C.; Schnepf, A. Au108S24(PPh3)16: A highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters. Angew. Chem., Int. Ed. 2017, 56, 393–396.

    Article  Google Scholar 

  18. Liu, C.; Li, T.; Li, G.; Nobusada, K.; Zeng, C. J.; Pang, G. S.; Rosi, N. L.; Jin, R. C. Observation of body-centered cubic gold nanocluster. Angew. Chem., Int. Ed. 2015, 54, 9826–9829.

    Article  Google Scholar 

  19. Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.

    Article  Google Scholar 

  20. Gan, Z. B.; Chen, J. S.; Wang, J.; Wang, C. M.; Li, M.-B.; Yao, C. H.; Zhuang, S. L.; Xu, A.; Li, L. L.; Wu, Z. K. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat. Commun. 2017, 8, 14739.

    Article  Google Scholar 

  21. Higaki, T.; Liu, C.; Zhou, M.; Luo, T.-Y.; Rosi, N. L.; Jin, R. C. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-Nap)41 and its implications, J. Am. Chem. Soc. 2017, 139, 9994–10001.

    Article  Google Scholar 

  22. Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8.

    Article  Google Scholar 

  23. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

    Article  Google Scholar 

  24. Nomiya, K.; Noguchi, R.; Ohsawa, K.; Tsuda, K.; Oda, M. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole). J. Inorg. Biochem. 2000, 78, 363–370.

    Article  Google Scholar 

  25. Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T.-Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.

    Article  Google Scholar 

  26. Wu, Z. K.; Jin, R. C. Exclusive synthesis of Au11(PPh3)8Br3 against the Cl analogue and the electronic interaction between cluster metal core and surface ligands. Chem.—Eur. J. 2013, 19, 12259–12263.

    Article  Google Scholar 

  27. Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal. 2017, 7, 3368–3374.

    Article  Google Scholar 

  28. Wu, Z. L.; Hu, G. X.; Jiang, D.-E.; Mullins, D. R.; Zhang, Q.-F.; Allard, L. F. Jr.; Wang, L.-S.; Overbury, S. H. Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett. 2016, 16, 6560–6567.

    Article  Google Scholar 

  29. Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Luo, N. C.; Wang, Y. H.; Abroshan, H.; Li, G.; Wang, F. Visible light gold nanocluster photocatalyst: Selective aerobic oxidation of amines to imines. ACS Catal. 2017, 7, 3632–3638.

    Article  Google Scholar 

  30. Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

    Article  Google Scholar 

  31. Li, G.; Abroshan, H.; Chen, Y. X.; Jin, R. C.; Kim, H. J. Experimental and mechanistic understanding of aldehyde hydrogenation using Au25 nanoclusters with lewis acids: Unique sites for catalytic reactions. J. Am. Chem. Soc. 2015, 137, 14295–14304.

    Article  Google Scholar 

  32. Elliott III, E. W.; Glover, R. D.; Hutchison, J. E. Removal of thiol ligands from surface-confined nanoparticles without particle growth or desorption. ACS Nano 2015, 9, 3050–3059.

    Article  Google Scholar 

  33. Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.

    Article  Google Scholar 

  34. Liu, C.; Zhang, J. Y.; Huang, J. H.; Zhang, C. L.; Hong, F.; Zhou, Y.; Li, G.; Haruta, M. Efficient aerobic oxidation of glucose to gluconic acid over activated carbon-supported gold clusters. Chemsuschem 2017, 10, 1976–1980.

    Article  Google Scholar 

  35. Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem. 2015, 17, 40–71.

    Article  Google Scholar 

  36. Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.

    Article  Google Scholar 

  37. Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093.

    Article  Google Scholar 

  38. Li, Z. M.; Li, W. L.; Abroshan, H.; Ge, Q. J.; Li, G.; Jin, R. C. Dual effects of water vapor on ceria-supported gold clusters. Nanoscale 2018, 10, 6558–6565.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support by the National Natural Science Foundation of China (No. 21701168), Liaoning Natural Science Foundation (No. 20170540897), open project Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (No. 201709), and Shanxi Province Hundred Talent Project. BL14B and BL17B beamline of National Facility for Protein Science in Shanghai, Shanghai Synchrotron Radiation Facility for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Zhang, J., Zhao, D. et al. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 12, 501–507 (2019). https://doi.org/10.1007/s12274-018-2147-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2147-0

Keywords

Navigation