Skip to main content
Log in

Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic framework (MOF)-derived functional carbon matrices have recently attracted considerable attention as energy-storage materials. However, the development of MOF-derived carbon materials with hierarchical structures, capable of thoroughly preventing the “shuttling᾿of polysulfides, is still a major challenge. Herein, we synthesized cobalt nanoparticle-containing porous carbon polyhedra with in situ grown N-doped carbon nanotube (CNT) backbone (NCCNT-Co), using zeolitic imidazolate framework-67 (ZIF-67) as starting material. The obtained NCCNT-Co, with interconnected N-doped CNTs on both inner and outer surfaces, possesses an integrated conductive network, which can further accelerate the transport of electrons/ions inside the whole sulfur cathode. The mesoporous structure derived from the ZIF-67 matrix and the densely immobilized CNTs, coupled with the homogeneously doped N atoms and Co nanoparticles, can efficiently trap lithium polysulfides (LiPSs) by physical confinement and chemical interactions. Furthermore, the hierarchical structure of the porous carbon polyhedra enables a high sulfur loading of up to 76 wt.% and can also buffer the volume changes of active sulfur during the lithiation process. As a result, the NCCNT-Co-S cathode delivers a high initial specific capacity of 1,300 mAh·g−1 at 0.1 C, along with a high capacity of 860 mAh·g−1 after 500 cycles at 1 C, with an extremely low capacity decay of 0.024% per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  Google Scholar 

  2. Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

    Google Scholar 

  3. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    Article  Google Scholar 

  4. Xiao, J.; Hu, J. Z.; Chen, H. H.; Vijayakumar, M.; Zheng, J. M.; Pan, H. L.; Walter, E. D.; Hu, M.; Deng, X. C.; Feng, J. et al. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 2015, 15, 3309–3316.

    Article  Google Scholar 

  5. Zhao, T.; Ye, Y. S.; Peng, X. Y.; Divitini, G.; Kim, H. K.; Lao, C. Y.; Coxon, P. R.; Xi, K.; Liu, Y. J.; Ducati, C. et al. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush. Adv. Funct. Mater. 2016, 26, 8418–8426.

    Article  Google Scholar 

  6. Chung, S. H.; Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352–7357.

    Article  Google Scholar 

  7. Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 28, 3374–3382.

    Article  Google Scholar 

  8. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; Mcdowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  9. Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 2015, 5, 1500738.

    Article  Google Scholar 

  10. Ma, L.; Hendrickson, K. E.; Wei, S. Y.; Archer, L. A. Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 2015, 10, 315–338.

    Article  Google Scholar 

  11. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  12. Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 2772–2781.

    Article  Google Scholar 

  13. Zhu, L.; Peng, H. J.; Liang, J. Y.; Huang, J. Q.; Chen, C. M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.

    Article  Google Scholar 

  14. Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Threedimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res. 2017, 10, 2495–2507.

    Article  Google Scholar 

  15. Li, H. P.; Sun, L. C.; Zhang, Y. G.; Tan, T. Z.; Wang, G. K.; Bakenov, Z. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J. Energy Chem. 2017, 26, 1276–1281.

    Article  Google Scholar 

  16. Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.

    Article  Google Scholar 

  17. Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

    Article  Google Scholar 

  18. Zhou, G. M.; Zhao, Y. B.; Manthiram, A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. 2015, 5, 1402263.

    Article  Google Scholar 

  19. Hernández-Rentero, C.; Córdoba, R.; Moreno, N.; Caballero, A.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Low-cost disordered carbons for Li/S batteries: A highperformance carbon with dual porosity derived from cherry pits. Nano Res. 2018, 11, 89–100.

    Article  Google Scholar 

  20. Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

    Article  Google Scholar 

  21. Patil, S. B.; Kim, H. J.; Lim, H.; Oh, S. M.; Kim, J.; Shin, J.; Kim, H.; Choi, J. W.; Hwang, S. Exfoliated 2D lepidocrocite titanium oxide nanosheets for high sulfur content cathodes with highly stable Li-S battery performance. ACS Energy Lett. 2018, 3, 412–419.

    Article  Google Scholar 

  22. Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium−sulfur batteries. Nano Energy 2017, 38, 239–248.

    Article  Google Scholar 

  23. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  24. Park, K.; Cho, J. H.; Jang, J. H.; Yu, B. C.; De La Hoz, A. T.; Miller, K. M.; Ellison, C. J.; Goodenough, J. B. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 2015, 8, 2389–2395.

    Article  Google Scholar 

  25. Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven Mxene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

    Article  Google Scholar 

  26. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  27. Wu, H. B.; Wei, S. Y.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. D. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem. —Eur. J. 2013, 19, 10804–10808.

    Article  Google Scholar 

  28. Xi, K.; Cao, S. A.; Peng, X. Y.; Ducati, C.; Vasant Kumar, R.; Cheetham, A. K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem. Commun. 2013, 49, 2192–2194.

    Article  Google Scholar 

  29. Bai, L. Y.; Chao, D. L.; Xing, P. Y.; Tou, L. J.; Chen, Z.; Jana, A.; Shen, Z. X.; Zhao, Y. L. Refined sulfur nanoparticles immobilized in metal-organic polyhedron as stable cathodes for Li-S battery. ACS Appl. Mater. Interfaces 2016, 8, 14328–14333.

    Article  Google Scholar 

  30. Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

    Article  Google Scholar 

  31. He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Xu, C.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. From metalorganic framework to Li2S@C-Co-N nanoporous architecture: A high-capacity cathode for lithium-sulfur batteries. ACS Nano 2016, 10, 10981–10987.

    Article  Google Scholar 

  32. Qiu, Y. C.; Li, G. Z.; Hou, Y.; Pan, Z. H.; Li, H. F.; Li, W. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem. Mater. 2015, 27, 1194–1200.

    Article  Google Scholar 

  33. Zhang, R. Z.; He, S. J.; Lu, Y. Z.; Chen, W. Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J. Mater. Chem. A 2015, 3, 3559–3567.

    Article  Google Scholar 

  34. Sun, J. K.; Xu, Q. Functional materials derived from open framework templates/precursors: Synthesis and applications. Energy Environ. Sci. 2014, 7, 2071–2100.

    Article  Google Scholar 

  35. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W. D.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  Google Scholar 

  36. Gulzar, U.; Li, T.; Bai, X.; Colombo, M.; Ansaldo, A.; Marras, S.; Prato, M.; Goriparti, S.; Capiglia, C.; Proietti Zaccaria, R. Nitrogen-doped single-walled carbon nanohorns as a cost-effective carbon host toward high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5551–5559.

    Article  Google Scholar 

  37. Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

    Article  Google Scholar 

  38. Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325–4329.

    Article  Google Scholar 

  39. Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.

    Article  Google Scholar 

  40. Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides᾿ and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.

    Article  Google Scholar 

  41. Chen, T.; Cheng, B. R.; Zhu, G. Y.; Chen, R. P.; Hu, Y.; Ma, L. B.; Lv, H. L.; Wang, Y. R.; Liang, J.; Tie, Z. X. et al. Highly efficient retention of polysulfides in “sea urchin᾿like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 2017, 17, 437–444.

    Article  Google Scholar 

  42. Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.

    Article  Google Scholar 

  43. Tan, J.; Liu, D. N.; Xu, X.; Mai, L. Q. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: A review. Nanoscale 2017, 9, 19001–19016.

    Article  Google Scholar 

  44. Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 2015, 27, 1694–1700.

    Article  Google Scholar 

  45. Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@ microporous carbon-supported sulfur@smaller sulfur coreshell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51433001 and 51373037), the Program of Shanghai Academic Research Leader (No. 17XD1400100), Natural Science Foundation of Jiangsu Province (No. BK20150238), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingkai Liu or Tianxi Liu.

Electronic supplementary material

12274_2018_2130_MOESM1_ESM.pdf

Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Zhang, C., Zhang, Y. et al. Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Res. 11, 6155–6166 (2018). https://doi.org/10.1007/s12274-018-2130-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2130-9

Keywords

Navigation