Skip to main content
Log in

Temperature-responsive polymers: Synthesis, properties, and biomedical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interest in temperature-responsive polymers has steadily grown over the past several decades, and numerous studies have been dedicated to developing temperature sensitive polymers that can be constructed into new smart materials for biomedical applications. Phase behavior of a temperature-responsive polymer plays a pivotal role in determining its biological performance in certain conditions. In addition to the additives (such as salts and proteins) in aqueous solutions, molecular weight, molecular weight distribution, and structural or compositional factors can also significantly affect the transition temperatures of the polymers. This review comprehensively describes well-established and newly developed synthetic strategies for preparing temperature-responsive polymers. The structural and compositional parameters that affect the transition temperatures and self-assembly behavior are discussed. Finally, the biomedical applications of the temperature-responsive polymers in drug delivery, immunotherapy, tissue engineering, and diagnosis are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scarpa, J. S.; Mueller, D. D.; Klotz, I. M. Slow hydrogendeuterium exchange in a non-.alpha.-helical polyamide. J. Am. Chem. Soc. 1967, 89, 6024–6030.

    Google Scholar 

  2. Qiao, S.-L.; Wang, Y.; Lin, Y.-X.; An, H.-W.; Ma, Y.; Li, L.-L.; Wang, L.; Wang, H. Thermo-controlled in situ phase transition of polymer–peptides on cell surfaces for highperformance proliferative inhibition. ACS Appl. Mater. Interfaces 2016, 8, 17016–17022.

    Google Scholar 

  3. Wang, Y.; Qiao, S.-L.; Wang, H. Facile synthesis of peptide cross-linked nanogels for tumor metastasis inhibition. ACS Appl. Nano Mater. 2018, 1, 785–792.

    Google Scholar 

  4. Qiao, S.-L.; Ma, Y.; Wang, Y.; Lin, Y.-X.; An, H.-W.; Li, L.-L.; Wang, H. General approach of stimuli-induced aggregation for monitoring tumor therapy. ACS Nano 2017, 11, 7301–7311.

    Google Scholar 

  5. Li, L.-L.; Qiao, S.-L.; Liu, W.-J.; Ma, Y.; Wan, D.; Pan, J.; Wang, H. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat. Commun. 2017, 8, 1276.

    Google Scholar 

  6. Huang, F.; Wang, J. Z.; Qu, A. R.; Shen, L. L.; Liu, J. J.; Liu, J. F.; Zhang, Z. K.; An, Y. L.; Shi, L. Q. Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew. Chem., Int. Ed. 2014, 53, 8985–8990.

    Google Scholar 

  7. Wang, C.; Zhang, G. Y.; Liu, G. H.; Hu, J. M.; Liu, S. Y. Photo-and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J. Control. Release 2017, 259, 149–159.

    Google Scholar 

  8. He, C. L.; Zhao, C. W.; Chen, X. S.; Guo, Z. J.; Zhuang, X. L.; Jing, X. B. Novel pH-and temperature-responsive block copolymers with tunable pH-responsive range. Macromol. Rapid Commun. 2008, 29, 490–497.

    Google Scholar 

  9. Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013, 42, 7214–7243.

    Google Scholar 

  10. Cobo, I.; Li, M.; Sumerlin, B. S.; Perrier, S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 2015, 14, 143–159.

    Google Scholar 

  11. Figg, C. A.; Simula, A.; Gebre, K. A.; Tucker, B. S.; Haddleton, D. M.; Sumerlin, B. S. Polymerization-induced thermal self-assembly (PITSA). Chem. Sci. 2015, 6, 1230–1236.

    Google Scholar 

  12. Grubbs, R. B.; Sun, Z. Shape-changing polymer assemblies. Chem. Soc. Rev. 2013, 42, 7436–7445.

    Google Scholar 

  13. Xu, J. T.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 2014, 136, 5508–5519.

    Google Scholar 

  14. Lv, Y.; Liu, Z. F.; Zhu, A. Q.; An, Z. S. Glucose oxidase deoxygenation–redox initiation for RAFT polymerization in air. J. Polym. Sci. 2017, 55, 164–174.

    Google Scholar 

  15. Blasco, E.; Sims, M. B.; Goldmann, A. S.; Sumerlin, B. S.; Barner-Kowollik, C. 50th anniversary perspective: Polymer functionalization. Macromolecules 2017, 50, 5215–5252.

    Google Scholar 

  16. Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Rapid and quantitative one-pot synthesis of sequencecontrolled polymers by radical polymerization. Nat. Commun. 2013, 4, 2505.

    Google Scholar 

  17. Li, H. M.; Li, M.; Yu, X.; Bapat, A. P.; Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2011, 2, 1531–1535.

    Google Scholar 

  18. Ma, Y.; Qiao, S.-L.; Wang, Y.; Lin, Y.-X.; An, H.-W.; Wu, X.-C.; Wang, L.; Wang, H. Nanoantagonists with nanophasesegregated surfaces for improved cancer immunotherapy. Biomaterials 2018, 156, 248–257.

    Google Scholar 

  19. Matsumoto, A.; Tanaka, M.; Matsumoto, H.; Ochi, K.; Moro-Oka, Y.; Kuwata, H.; Yamada, H.; Shirakawa, I.; Miyazawa, T.; Ishii, H. et al. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 2017, 3, eaaq0723.

    Google Scholar 

  20. Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

    Google Scholar 

  21. Li, D.; Zheng, Q.; Wang, Y. W.; Chen, H. Combining surface topography with polymer chemistry: Exploring new interfacial biological phenomena. Polym. Chem. 2014, 5, 14–24.

    Google Scholar 

  22. Kim, J.; Yoon, J.; Hayward, R. C. Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 2010, 9, 159–164.

    Google Scholar 

  23. Liu, J. C.; Wang, N.; Yu, L. J.; Karton, A.; Li, W.; Zhang, W. X.; Guo, F. Y.; Hou, L. L.; Cheng, Q. F.; Jiang, L. et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat. Commun. 2017, 8, 2011.

    Google Scholar 

  24. Onoda, M.; Ueki, T.; Tamate, R.; Shibayama, M.; Yoshida, R. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nat. Commun. 2017, 8, 15862.

    Google Scholar 

  25. Kim, Y. S.; Liu, M. J.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002–1007.

    Google Scholar 

  26. Stuart, M. A.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.

    Google Scholar 

  27. Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533.

    Google Scholar 

  28. Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of RAFT polymerization: Recent advances and new horizons. Macromolecules 2015, 48, 5459–5469.

    Google Scholar 

  29. Dou, Q. Q.; Liow, S. S.; Ye, E.; Lakshminarayanan, R.; Loh, X. J. Biodegradable thermogelling polymers: Working towards clinical applications. Adv. Healthc. Mater. 2014, 3, 977–988.

    Google Scholar 

  30. Sun, T.; Qing, G. Biomimetic smart interface materials for biological applications. Adv. Mater. 2011, 23, H57–H77.

    Google Scholar 

  31. Das, A.; Theato, P. Activated ester containing polymers: Opportunities and challenges for the design of functional macromolecules. Chem. Rev. 2016, 116, 1434–1495.

    Google Scholar 

  32. Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663.

    Google Scholar 

  33. Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009, 38, 1139–1151.

    Google Scholar 

  34. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18–37.

    Google Scholar 

  35. Payne, K. A.; Cunningham, M. F.; Hutchinson, R. A. ARGET ATRP of BMA and BA: Exploring limitations at low copper levels. In Progress in Controlled Radical Polymerization: Mechanisms and Techniques. ACS Symposium Series; Matyjaszewski, K.; Sumerlin, B. S.; Tsarevsky, N. T., Eds.; American Chemical Society: Washington, DC, 2012; Vol. 1100, pp 183–202.

    Google Scholar 

  36. Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949.

    Google Scholar 

  37. Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276–288.

    Google Scholar 

  38. Konkolewicz, D.; Magenau, A. J. D.; Averick, S. E.; Simakova, A.; He, H. K.; Matyjaszewski, K. ICAR ATRP with ppm Cu catalyst in water. Macromolecules 2012, 45, 4461–4468.

    Google Scholar 

  39. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J. Y.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl. Acad. Sci. USA 2006, 103, 15309–15314.

    Google Scholar 

  40. Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

    Google Scholar 

  41. Dong, H. C.; Matyjaszewski, K. Thermally responsive P(M(EO)2MA-co-OEOMA) copolymers via AGET ATRP in miniemulsion. Macromolecules 2010, 43, 4623–4628.

    Google Scholar 

  42. Yamamoto, S. I.; Matyjaszewski, K. ARGET ATRP synthesis of thermally responsive polymers with oligo(ethylene oxide) units. Polym. J. 2008, 40, 496–497.

    Google Scholar 

  43. Porsch, C.; Hansson, S.; Nordgren, N.; Malmstrom, E. Thermo-responsive cellulose-based architectures: Tailoring LCST using poly(ethylene glycol) methacrylates. Polym. Chem. 2011, 2, 1114–1123.

    Google Scholar 

  44. Konkolewicz, D.; Krys, P.; Góis, J. R.; Mendonça, P. V.; Zhong, M. J.; Wang, Y.; Gennaro, A.; Isse, A. A.; Fantin, M.; Matyjaszewski, K. Aqueous RDRP in the presence of Cu0: The exceptional activity of CuI confirms the SARA ATRP mechanism. Macromolecules 2014, 47, 560–570.

    Google Scholar 

  45. Chmielarz, P.; Fantin, M.; Park, S.; Isse, A. A.; Gennaro, A.; Magenau, A. J. D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78.

    Google Scholar 

  46. Wenn, B.; Conradi, M.; Carreiras, A. D.; Haddleton, D. M.; Junkers, T. Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors. Polym. Chem. 2014, 5, 3053–3060.

    Google Scholar 

  47. Enciso, A. E.; Fu, L. Y.; Russell, A. J.; Matyjaszewski, K. A breathing atom-transfer radical polymerization: Fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem., Int. Ed. 2018, 130, 945–948.

    Google Scholar 

  48. Sumerlin, B. S. Proteins as initiators of controlled radical polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett. 2012, 1, 141–145.

    Google Scholar 

  49. Sigg, S. J.; Seidi, F.; Renggli, K.; Silva, T. B.; Kali, G.; Bruns, N. Horseradish peroxidase as a catalyst for atom transfer radical polymerization. Macromol. Rapid Commun. 2011, 32, 1710–1715.

    Google Scholar 

  50. Magenau, A. J. D.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 81–84.

    Google Scholar 

  51. Pan, X. C.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73–125.

    Google Scholar 

  52. Wang, Z. H.; Pan, X. C.; Yan, J. J.; Dadashi-Silab, S.; Xie, G. J.; Zhang, J. N.; Wang, Z. H.; Xia, H. S.; Matyjaszewski, K. Temporal control in mechanically controlled atom transfer radical polymerization using low ppm of Cu catalyst. ACS Macro Lett. 2017, 6, 546–549.

    Google Scholar 

  53. Chmielarz, P.; Krys, P.; Park, S.; Matyjaszewski, K. PEOb-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. Polymer 2015, 71, 143–147.

    Google Scholar 

  54. Bortolamei, N.; Isse, A. A.; Magenau, A. J. D.; Gennaro, A.; Matyjaszewski, K. Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. Angew. Chem., Int. Ed. 2011, 50, 11391–11394.

    Google Scholar 

  55. Park, S.; Chmielarz, P.; Gennaro, A.; Matyjaszewski, K. Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. Angew. Chem., Int. Ed. 2015, 127, 2418–2422.

    Google Scholar 

  56. Magennis, E. P.; Fernandez-Trillo, F.; Sui, C.; Spain, S. G.; Bradshaw, D. J.; Churchley, D.; Mantovani, G.; Winzer, K.; Alexander, C. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat. Mater. 2014, 13, 748–755.

    Google Scholar 

  57. Fan, G.; Dundas, C. M.; Graham, A. J.; Lynd, N. A.; Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl. Acad. Sci. USA 2018, 115, 4559–4564.

    Google Scholar 

  58. Kali, G.; Silva, T. B.; Sigg, S. J.; Seidi, F.; Renggli, K.; Bruns, N. ATRPases: Using nature's catalysts in atom transfer radical polymerizations. In Progress in Controlled Radical Polymerization: Mechanisms and Techniques. ACS Symposium Series; Matyjaszewski, K.; Sumerlin, B. S.; Tsarevsky, N. T., Eds.; American Chemical Society: Washington, DC, 2012; Vol. 1100, pp 171–181.

    Google Scholar 

  59. Ng, Y. H.; di Lena, F.; Chai, C. L. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chem. Commun. 2011, 47, 6464–6466.

    Google Scholar 

  60. Renggli, K.; Spulber, M.; Pollard, J.; Rother, M.; Bruns, N. Biocatalytic ATRP: Controlled radical polymerizations mediated by enzymes. In Green Polymer Chemistry: Biocatalysis and Materials II. ACS Symposium Series; Cheng, H. N.; Gross, R. A.; Smith, P. B., Eds.; American Chemical Society: Washington, DC, 2013; Vol. 1144, pp 163–171.

    Google Scholar 

  61. Sigg, S. J.; Seidi, F.; Renggli, K.; Silva, T. B.; Kali, G.; Bruns, N. ATRPases: Enzymes as catalysts for atom transfer radical polymerization. Chimia 2012, 66, 66.

    Google Scholar 

  62. Simakova, A.; Mackenzie, M.; Averick, S. E.; Park, S.; Matyjaszewski, K. Bioinspired iron-based catalyst for atom transfer radical polymerization. Angew. Chem., Int. Ed. 2013, 52, 12148–12151.

    Google Scholar 

  63. Divandari, M.; Pollard, J.; Dehghani, E.; Bruns, N.; Benetti, E. M. Controlling enzymatic polymerization from surfaces with switchable bioaffinity. Biomacromolecules 2017, 18, 4261–4270.

    Google Scholar 

  64. Dinu, M. V.; Spulber, M.; Renggli, K.; Wu, D. L.; Monnier, C. A.; Petri-Fink, A.; Bruns, N. Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization. Macromol. Rapid Commun. 2015, 36, 507–514.

    Google Scholar 

  65. Ng, Y.-H.; di Lena, F.; Chai, C. L. L. Metalloenzymatic radical polymerization using alkyl halides as initiators. Polym. Chem. 2011, 2, 589–594.

    Google Scholar 

  66. Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 2006, 39, 1724–1730.

    Google Scholar 

  67. Kotsuchibashi, Y.; Narain, R. Dual-temperature and pH responsive (ethylene glycol)-based nanogels via structural design. Polym. Chem. 2014, 5, 3061–3070.

    Google Scholar 

  68. Mäkinen, L.; Varadharajan, D.; Tenhu, H.; Hietala, S. Triple hydrophilic UCST–LCST block copolymers. Macromolecules 2016, 49, 986–993.

    Google Scholar 

  69. Etchenausia, L.; Rodrigues, A. M.; Harrisson, S.; Deniau Lejeune, E.; Save, M. RAFT copolymerization of vinyl acetate and N-vinylcaprolactam: Kinetics, control, copolymer composition, and thermoresponsive self-assembly. Macromolecules 2016, 49, 6799–6809.

    Google Scholar 

  70. Wang, K.; Chen, S. L.; Zhang, W. Q. A new family of thermo-, pH-, and CO2-responsive homopolymers of poly[oligo(ethylene glycol) (N-dialkylamino) methacrylate]s. Macromolecules 2017, 50, 4686–4698.

    Google Scholar 

  71. Tan, J. B.; Bai, Y. H.; Zhang, X. C.; Huang, C. D.; Liu, D. D.; Zhang, L. Low-temperature synthesis of thermoresponsive diblock copolymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (Photo-PISA) using thermoresponsive macro-RAFT agents. Macromol. Rapid Commun. 2016, 37, 1434–1440.

    Google Scholar 

  72. De, P.; Li, M.; Gondi, S. R.; Sumerlin, B. S. Temperatureregulated activity of responsive polymer–protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 2008, 130, 11288–11289.

    Google Scholar 

  73. Li, M.; Li, H. M.; De, P.; Sumerlin, B. S. Thermoresponsive block copolymer-protein conjugates prepared by grafting from via RAFT polymerization. Macromol. Rapid Commun. 2011, 32, 354–359.

    Google Scholar 

  74. Liu, J. Q.; Bulmus, V.; Herlambang, D. L.; Barner-Kowollik, C.; Stenzel, M. H.; Davis, T. P. In situ formation of protein–polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem., Int. Ed. 2007, 46, 3099–3103.

    Google Scholar 

  75. Boyer, C.; Bulmus, V.; Liu, J. Q.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Well-defined protein–polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 2007, 129, 7145–7154.

    Google Scholar 

  76. Reyhani, A.; McKenzie, T. G.; Ranji-Burachaloo, H.; Fu, Q.; Qiao, G. G. Fenton-RAFT polymerization: An “on-demand” chain-growth method. Chem.—Eur. J. 2017, 23, 7221–7226.

    Google Scholar 

  77. Gormley, A. J.; Yeow, J.; Ng, G.; Conway, Ó.; Boyer, C.; Chapman, R. An oxygen-tolerant PET-RAFT polymerization for screening structure-activity relationships. Angew. Chem., Int. Ed. 2018, 57, 1557–1562.

    Google Scholar 

  78. Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O'Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 2017, 9, 537–545.

    Google Scholar 

  79. Tucker, B. S.; Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. Grafting-from proteins using metal-free PET–RAFT polymerizations under mild visible-light irradiation. ACS Macro Lett. 2017, 6, 452–457.

    Google Scholar 

  80. Zhou, H. X.; Johnson, J. A. Photo-controlled growth of telechelic polymers and end-linked polymer gels. Angew. Chem., Int. Ed. 2013, 52, 2235–2238.

    Google Scholar 

  81. Chapman, R.; Gormley, A. J.; Stenzel, M. H.; Stevens, M. M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem., Int. Ed. 2016, 128, 4576–4579.

    Google Scholar 

  82. Chapman, R.; Gormley, A. J.; Herpoldt, K.-L.; Stevens, M. M. Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 2014, 47, 8541–8547.

    Google Scholar 

  83. Tan, J. B.; Liu, D. D.; Bai, Y. H.; Huang, C. D.; Li, X. L.; He, J.; Xu, Q.; Zhang, L. Enzyme-assisted photoinitiated polymerization-induced self-assembly: An oxygen-tolerant method for preparing block copolymer nano-objects in open vessels and multiwell plates. Macromolecules 2017, 50, 5798–5806.

    Google Scholar 

  84. Halperin, A.; Kröger, M.; Winnik, F. M. Poly(Nisopropylacrylamide) phase diagrams: Fifty years of research. Angew. Chem., Int. Ed. 2015, 54, 15342–15367.

    Google Scholar 

  85. Chang, B. S.; Zhang, M. X.; Qing, G. Y.; Sun, T. L. Dynamic biointerfaces: From recognition to function. Small 2015, 11, 1097–1112.

    Google Scholar 

  86. Jochum, F. D.; Theato, P. Temperature-and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483.

    Google Scholar 

  87. Zhuang, J. M.; Gordon, M. R.; Ventura, J.; Li, L. Y.; Thayumanavan, S. Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 2013, 42, 7421–7435.

    Google Scholar 

  88. Shimoboji, T.; Larenas, E.; Fowler, T.; Kulkarni, S.; Hoffman, A. S.; Stayton, P. S. Photoresponsive polymer-enzyme switches. Proc. Natl. Acad. Sci. USA 2002, 99, 16592–16596.

    Google Scholar 

  89. Katayama, Y.; Sonoda, T.; Maeda, M. A polymer micelle responding to the protein kinase a signal. Macromolecules 2001, 34, 8569–8573.

    Google Scholar 

  90. Sonoda, T.; Nogami, T.; Oishi, J.; Murata, M.; Niidome, T.; Katayama, Y. A peptide sequence controls the physical properties of nanoparticles formed by peptide–polymer conjugates that respond to a protein kinase a signal. Bioconjugate Chem. 2005, 16, 1542–1546.

    Google Scholar 

  91. Beltran, S.; Baker, J. P.; Hooper, H. H.; Blanch, H. W.; Prausnitz, J. M. Swelling equilibria for weakly ionizable, temperature-sensitive hydrogels. Macromolecules 1991, 24, 549–551.

    Google Scholar 

  92. Aoyagi, T.; Ebara, M.; Sakai, K.; Sakurai, Y.; Okano, T. Novel bifunctional polymer with reactivity and temperature sensitivity. J. Biomater. Sci.-Polym. Ed. 2000, 11, 101–110.

    Google Scholar 

  93. Cho, Y.; Zhang, Y. J.; Christensen, T.; Sagle, L. B.; Chilkoti, A.; Cremer, P. S. Effects of hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 2008, 112, 13765–13771.

    Google Scholar 

  94. Chung, J. E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 1999, 62, 115–127.

    Google Scholar 

  95. Wei, H.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. Thermosensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci. 2009, 34, 893–910.

    Google Scholar 

  96. MacKay, J. A.; Chen, M. N.; McDaniel, J. R.; Liu, W. G.; Simnick, A. J.; Chilkoti, A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 2009, 8, 993–999.

    Google Scholar 

  97. Rijcken, C. J. F.; Soga, O.; Hennink, W. E.; van Nostrum, C. F. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. J Control. Release 2007, 120, 131–148.

    Google Scholar 

  98. Wei, H.; Zhang, X. Z.; Cheng, C.; Cheng, S.-X.; Zhuo, R.-X. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 2007, 28, 99–107.

    Google Scholar 

  99. Moon, J. J.; Suh, H.; Bershteyn, A.; Stephan, M. T.; Liu, H. P.; Huang, B.; Sohail, M.; Luo, S.; Um, S. H.; Khant, H. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 2011, 10, 243–251.

    Google Scholar 

  100. Qi, Y. Z.; Simakova, A.; Ganson, N. J.; Li, X. H.; Luginbuhl, K. M.; Ozer, I.; Liu, W. G.; Hershfield, M. S.; Matyjaszewski, K.; Chilkoti, A. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 2016, 1, 0002.

    Google Scholar 

  101. Luginbuhl, K. M.; Schaal, J. L.; Umstead, B.; Mastria, E. M.; Li, X. H.; Banskota, S.; Arnold, S.; Feinglos, M.; D’Alessio, D.; Chilkoti, A. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat. Biomed. Eng. 2017, 1, 0078.

    Google Scholar 

  102. Goodall, S.; Howard, C. B.; Jones, M. L.; Munro, T.; Jia, Z.; Monteiro, M. J.; Mahler, S. An EGFR targeting nanoparticle self assembled from a thermoresponsive polymer. J. Chem. Technol. Biot. 2015, 90, 1222–1229.

    Google Scholar 

  103. Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 2015, 33, 1201–1210.

    Google Scholar 

  104. Langer, R.; Vacanti, J. P. Tissue engineering. Science 1993, 260, 920–926.

    Google Scholar 

  105. Ward, M. A.; Georgiou, T. K. Thermoresponsive polymers for biomedical applications. Polymers 2011, 3, 1215–1242.

    Google Scholar 

  106. Chen, Z. W.; Hu, Q. Y.; Gu, Z. Leveraging engineering of cells for drug delivery. Acc. Chem. Res. 2018, 51, 668–677.

    Google Scholar 

  107. Chen, Z. W.; Wang, J. Q.; Sun, W. J.; Archibong, E.; Kahkoska, A. R.; Zhang, X. D.; Lu, Y.; Ligler, F. S.; Buse, J. B.; Gu, Z. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 2018, 14, 86–93.

    Google Scholar 

  108. Reed, J. A.; Lucero, A. E.; Hu, S.; Ista, L. K.; Bore, M. T.; López, G. P.; Canavan, H. E. A low-cost, rapid deposition method for “smart” films: Applications in mammalian cell release. ACS Appl. Mater. Interfaces 2010, 2, 1048–1051.

    Google Scholar 

  109. Laloyaux, X.; Fautré, E.; Blin, T.; Purohit, V.; Leprince, J.; Jouenne, T.; Jonas, A. M.; Glinel, K. Temperatureresponsive polymer brushes switching from bactericidal to cell-repellent. Adv. Mater. 2010, 22, 5024–5028.

    Google Scholar 

  110. Yu, L.; Ding, J. D. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008, 37, 1473–1481.

    Google Scholar 

  111. Lee, J.; Bae, Y. H.; Sohn, Y. S.; Jeong, B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules 2006, 7, 1729–1734.

    Google Scholar 

  112. Chen, Y. S.; Yoon, S. J.; Frey, W.; Dockery, M.; Emelianov, S. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat. Commun. 2017, 8, 15782.

    Google Scholar 

  113. Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705.

    Google Scholar 

  114. Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal. Chem. 2003, 75, 5926–5935.

    Google Scholar 

  115. Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21374026 and 51573032), the National Science Fund for Distinguished Young Scholars (No. 51725302), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 11621505), CAS Key Research Program for Frontier Sciences (No. QYZDJ-SSW-SLH022), Key Project of Chinese Academy of Sciences in Cooperation with Foreign Enterprises (No. GJHZ1541), and CAS Interdisciplinary Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Wang, H. Temperature-responsive polymers: Synthesis, properties, and biomedical applications. Nano Res. 11, 5400–5423 (2018). https://doi.org/10.1007/s12274-018-2121-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2121-x

Keywords

Navigation