Skip to main content
Log in

Recent progress in background-free latent fingerprint imaging

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to their unique pattern and abundant chemical composition, latent fingerprints (LFPs) can serve as “ID cards” and “information banks” of donors and therefore are valuable for forensic investigation, access control, and even medical diagnosis. LFP imaging has attracted considerable attention, and a great variety of contrast agents has been developed. In LFP imaging, background signals such as background fluorescence from the underlying surface can seriously blur the LFP images and decrease imaging sensitivity; thus, great efforts have been made to eliminate background interference. Here, we stratify the recent progress in background-free LFP imaging by making use of the difference in properties between contrast agents and background compounds. For example, near-infrared (NIR) light-activatable contrast agents can efficiently remove background signals in LFP imaging because the background compounds cannot be excited by NIR light, showing that the difference in excitation properties between contrast agents and background compounds can be employed to eliminate background interference. This review is organized around background-free LFP imaging based on the difference in optical properties between contrast agents and background compounds: (i) different excitation wavelengths, (ii) different emission wavelengths, (iii) different luminescence lifetime values, (iv) different plasmonic properties, (v) different photothermal properties, and (vi) different electrochemiluminescence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hazarika, P.; Russell, D. A. Advances in fingerprint analysis. Angew. Chem., Int. Ed. 2012, 51, 3524–3531.

    Google Scholar 

  2. Rastogi, P.; Pillai, K. R. A study of fingerprints in relation to gender and blood group. J. Indian Acad. Forensic Med. 2010, 32, 11–14.

    Google Scholar 

  3. Wei, Q. H.; Zhang, M. Q.; Ogorevc, B.; Zhang, X. J. Recent advances in the chemical imaging of human fingermarks (a review). Analyst 2016, 141, 6172–6189.

    Google Scholar 

  4. Ewing, A. V.; Kazarian, S. G. Infrared spectroscopy and spectroscopic imaging in forensic science. Analyst 2017, 142, 257–272.

    Google Scholar 

  5. Bécue, A. Emerging fields in fingermark (meta)detection—A critical review. Anal. Methods 2016, 8, 7983–8003.

    Google Scholar 

  6. Cadd, S.; Islam, M.; Manson, P.; Bleay, S. Fingerprint composition and aging: A literature review. Sci. Justice 2015, 55, 219–238.

    Google Scholar 

  7. Comi, T. J.; Ryu, S. W.; Perry, R. H. Synchronized desorption electrospray ionization mass spectrometry imaging. Anal. Chem. 2016, 88, 1169–1175.

    Google Scholar 

  8. Cortés-Salazar, F.; Momotenko, D.; Girault, H. H. Lesch, A.; Wittstock, G. Seeing big with scanning electrochemical microscopy. Anal. Chem. 2011, 83, 1493–1499.

    Google Scholar 

  9. Ricci, C.; Bleay, S.; Kazarian, S. G. Spectroscopic imaging of latent fingermarks collected with the aid of a gelatin tape. Anal. Chem. 2007, 79, 5771–5776.

    Google Scholar 

  10. Kelly, P. F.; King, R. S. P.; Mortimer, R. J. Fingerprint and inkjet-trace imaging using disulfur dinitride. Chem. Commun. 2008, 6111–6113.

    Google Scholar 

  11. Zhang, M. Q.; Becue, A.; Prudent, M.; Champod, C.; Girault, H. H. SECM imaging of MMD-enhanced latent fingermarks. Chem. Commun. 2007, 3948–3950.

    Google Scholar 

  12. Menzel, E. R. Recent advances in photoluminescence detection of fingerprints. Sci. World J. 2001, 1, 498–509.

    Google Scholar 

  13. Chadwick, S.; Maynard, P.; Kirkbride, P.; Lennard, C.; Spindler, X.; Roux, C. Use of Styryl 11 and STaR 11 for the luminescence enhancement of cyanoacrylate developed fingermarks in the visible and near-infrared regions. J. Forensic Sci. 2011, 56, 1505–1513.

    Google Scholar 

  14. Fernandes, D.; Krysmann, M. J.; Kelarakis, A. Carbon dot based nanopowders and their application for fingerprint recovery. Chem. Commun. 2015, 51, 4902–4905.

    Google Scholar 

  15. Li, B.-Y.; Zhang, X.-L.; Zhang, L.-Y.; Wang, T.-T.; Li, L.; Wang, C.-G.; Su, Z.-M. NIR-responsive NaYF4:Yb,Er,Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes Pigm. 2016, 134, 178–185.

    Google Scholar 

  16. Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y.-Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.

    Google Scholar 

  17. Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965–13969.

    Google Scholar 

  18. Hu, X. X.; Wei, T.; Wang, J.; Liu, Z.-E.; Li, X. Y.; Zhang, B. H.; Li, Z. H.; Li, L. L.; Yuan, Q. Near-infrared-light mediated ratiometric luminescent sensor for multimode visualized assays of explosives. Anal. Chem. 2014, 86, 10484–10491.

    Google Scholar 

  19. Liu, Z.-E.; Wang, J.; Li, Y.; Hu, X. X.; Yin, J. W.; Peng, Y. Q.; Li, Z. H.; Li, Y. W.; Li, B. M.; Yuan, Q. Near-infrared light manipulated chemoselective reductions enabled by an upconversional supersandwich nanostructure. ACS Appl. Mater. Interfaces 2015, 7, 19416–19423.

    Google Scholar 

  20. Ma, Q. Q.; Wang, J.; Li, Z. H.; Wang, D.; Hu, X. X.; Xu, Y. S.; Yuan, Q. Near-infrared-light-mediated high-throughput information encryption based on the inkjet printing of upconversion nanoparticles. Inorg. Chem. Front. 2017, 4, 1166–1172.

    Google Scholar 

  21. Tan, Y. N.; Hu, X. X.; Liu, M.; Liu, X. W.; Lv, X. B.; Li, Z. H.; Wang, J.; Yuan, Q. Simultaneous visualization and quantitation of multiple steroid hormones based on signalamplified biosensing with duplex molecular recognition. Chem.—Eur. J. 2017, 23, 10683–10689.

    Google Scholar 

  22. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

    Google Scholar 

  23. Wang, M.; Zhu, Y.; Mao, C. B. Synthesis of NIR-responsive NaYF4:Yb,Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir 2015, 31, 7084–7090.

    Google Scholar 

  24. Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem., Int. Ed. 2014, 53, 1616–1620.

    Google Scholar 

  25. Wang, M. Latent fingermarks light up: Facile development of latent fingermarks using NIR-responsive upconversion fluorescent nanocrystals. RSC Adv. 2016, 6, 36264–36268.

    Google Scholar 

  26. Li, J. C.; Zhu, X. J.; Xue, M.; Feng, W.; Ma, R. L.; Li, F. Y. Nd3+-sensitized upconversion nanostructure as a dual-channel emitting optical probe for near infrared-to-near infrared fingerprint imaging. Inorg. Chem. 2016, 55, 10278–10283.

    Google Scholar 

  27. Wang, M.; Li, M.; Yang, M. Y.; Zhang, X. M.; Yu, A. Y.; Zhu, Y.; Qiu, P. H.; Mao, C. B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state. Nano Res. 2015, 8, 1800–1810.

    Google Scholar 

  28. Tiwari, S. P.; Kumar, K.; Rai, V. K. Latent fingermarks detection for La2O3:Er3+/Yb3+ phosphor material in upconversion emission mode: A comparative study. J. Appl. Phys. 2015, 118, 183109.

    Google Scholar 

  29. Zhou, D. L.; Li, D. Y.; Zhou, X. Y.; Xu, W.; Chen, X.; Liu, D. L.; Zhu, Y. S.; Song, H. W. Semiconductor plasmon induced up-conversion enhancement in mCu2–xS@SiO2@ Y2O3:Yb3+/Er3+ core–shell nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 35226–35233.

    Google Scholar 

  30. Chen, X.; Xu, W.; Zhang, L. H.; Bai, X.; Cui, S. B.; Zhou, D. L.; Yin, Z.; Song, H. W.; Kim, D.-H. Large upconversion enhancement in the “Islands” Au–Ag alloy/NaYF4:Yb3+,Tm3+/Er3+ composite films, and fingerprint identification. Adv. Funct. Mater. 2015, 25, 5462–5471.

    Google Scholar 

  31. Xie, H.-H.; Wen, Q.; Huang, H.; Sun, T.-Y.; Li, P. H.; Li, Y.; Yu, X.-F.; Wang, Q.-Q. Synthesis of bright upconversion submicrocrystals for high-contrast imaging of latentfingerprints with cyanoacrylate fuming. RSC Adv. 2015, 5, 79525–79531.

    Google Scholar 

  32. Hong, S.; Kim, M.; Yu, S. Latent fingermark development on thermal paper using 1,2-indanedione/zinc and polyvinylpyrrolidone. J. Forensic Sci. 2018, 63, 548–555.

    Google Scholar 

  33. Brunelle, E.; Huynh, C.; Le, A. M.; Halámková, L.; Agudelo, J.; Halámek, J. New horizons for ninhydrin: Colorimetric determination of gender from fingerprints. Anal. Chem. 2016, 88, 2413–2420.

    Google Scholar 

  34. Berdejo, S.; Rowe, M.; Bong, J. W. Latent fingermark development on a range of porous substrates using ninhydrin analogs—A comparison with ninhydrin and 1,8-diazofluoren. J. Forensic Sci. 2012, 57, 509–514.

    Google Scholar 

  35. Patton, E. L. T.; Brown, D. H. Lewis, S. W. Detection of latent fingermarks on thermal printer paper by dry contact with 1,2-indanedione. Anal. Methods 2010, 2, 631–637.

    Google Scholar 

  36. Thomas, P.; Farrugia, K. An investigation into the enhancement of fingermarks in blood on paper with genipin and lawsone. Sci. Justice 2013, 53, 315–320.

    Google Scholar 

  37. Jelly, R.; Lewis, S. W.; Lennard, C.; Lim, K. F.; Almog, J. Lawsone: A novel reagent for the detection of latent fingermarks on paper surfaces. Chem. Commun. 2008, 3513–3515.

    Google Scholar 

  38. Fritz, P.; van Bronswijk, W.; Lewis, S. W. p-Dimethylaminobenzaldehyde: Preliminary investigations into a novel reagent for the detection of latent fingermarks on paper surfaces. Anal. Methods 2013, 5, 3207–3215.

    Google Scholar 

  39. Wood, M.; Maynard, P.; Spindler, X.; Lennard, C.; Roux, C. Visualization of latent fingermarks using an aptamer-based reagent. Angew. Chem., Int. Ed. 2012, 51, 12272–12274.

    Google Scholar 

  40. Frick, A. A.; Busetti, F.; Cross, A.; Lewis, S. W. Aqueous Nile blue: A simple, versatile and safe reagent for the detection of latent fingermarks. Chem. Commun. 2014, 50, 3341–3343.

    Google Scholar 

  41. Qi, A.; Miskelly, G. M. Staining using the lipid dye LD540 in fluorous media: Application to sebaceous latent fingermarks. Anal. Methods 2015, 7, 1265–1268.

    Google Scholar 

  42. Li, Y.; Xu, L. R.; Su, B. Aggregation induced emission for the recognition of latent fingerprints. Chem. Commun. 2012, 48, 4109–4111.

    Google Scholar 

  43. Xu, L. R.; Li, Y.; Li, S. H.; Hu, R. R.; Qin, A. J.; Tang, B. Z.; Su, B. Enhancing the visualization of latent fingerprints by aggregation induced emission of siloles. Analyst 2014, 139, 2332–2335.

    Google Scholar 

  44. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    Google Scholar 

  45. Jin, X. D.; Dong, L. B.; Di, X. Y.; Huang, H.; Liu, J. N.; Sun, X. L.; Zhang, X. Q.; Zhu, H. J. NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes. RSC Adv. 2015, 5, 87306–87310.

    Google Scholar 

  46. Jin, X. D.; Xin, R.; Wang, S. F.; Yin, W. Z.; Xu, T. X.; Jiang, Y.; Ji, X. R.; Chen, L. Y.; Liu, J. N. A tetraphenylethenebased dye for latent fingerprint analysis. Sensor. Actuat. B: Chem. 2017, 244, 777–784.

    Google Scholar 

  47. Malik, A. H.; Kalita, A.; Iyer, P. K. Development of wellpreserved, substrate-versatile latent fingerprints by aggregationinduced enhanced emission-active conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 2017, 9, 37501–37508.

    Google Scholar 

  48. Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735.

    Google Scholar 

  49. Bentolila, A.; Totre, J.; Zozulia, I.; Levin-Elad, M.; Domb, A. J. Fluorescent cyanoacrylate monomers and polymers for fingermark development. Macromolecules 2013, 46, 4822–4828.

    Google Scholar 

  50. Lee, J.; Pyo, M.; Lee, S.-H.; Kim, J.; Ra, M.; Kim, W.-Y.; Park, B. J.; Lee, C. W.; Kim, J.-M. Hydrochromic conjugated polymers for human sweat pore mapping. Nat. Commun. 2014, 5, 3736.

    Google Scholar 

  51. Locard, E. Les Pores et L’identification des criminels. Biologica: Revue Scientifique de Medicine 1912, 2, 357–365.

    Google Scholar 

  52. Kwak, G.; Lee, W.-E.; Kim, W.-H.; Lee, H. Fluorescence imaging of latent fingerprints on conjugated polymer films with large fractional free volume. Chem. Commun. 2009, 2112–2114.

    Google Scholar 

  53. Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477–14484.

    Google Scholar 

  54. Chen, Y.-H.; Kuo, S.-Y.; Tsai, W.-K.; Ke, C.-S.; Liao, C.-H.; Chen, C.-P.; Wang, Y.-T.; Chen, H.-W.; Chan, Y.-H. Dual colorimetric and fluorescent imaging of latent fingerprints on both porous and nonporous surfaces with near-infrared fluorescent semiconducting polymer dots. Anal. Chem. 2016, 88, 11616–11623.

    Google Scholar 

  55. Park, D.-H.; Park, B. J.; Kim, J.-M. Hydrochromic approaches to mapping human sweat pores. Acc. Chem. Res. 2016, 49, 1211–1222.

    Google Scholar 

  56. Yoon, J.-H.; Jin, Y.-J.; Sakaguchi, T.; Kwak, G. Visualization of sweat fingerprints on various surfaces using a conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 2016, 8, 24025–24029.

    Google Scholar 

  57. Lee, J.; Lee, C. W.; Kim, J.-M. A magnetically responsive polydiacetylene precursor for latent fingerprint analysis. ACS Appl. Mater. Interfaces 2016, 8, 6245–6251.

    Google Scholar 

  58. Kim, B. S.; Jin, Y.-J.; Uddin, M. A.; Sakaguchi, T.; Woo, H. Y.; Kwak, G. Surfactant chemistry for fluorescence imaging of latent fingerprints using conjugated polyelectrolyte nanoparticles. Chem. Commun. 2015, 51, 13634–13637.

    Google Scholar 

  59. Pyo, M.; Lee, J.; Baek, W.; Lee, C. W.; Park, B. J. Kim, J.-M. Sweat pore mapping using a fluorescein-polymer composite film for fingerprint analysis. Chem. Commun. 2015, 51, 3177–3180.

    Google Scholar 

  60. Yang, S. Y.; Wang, C.-F.; Chen, S. A release-induced response for the rapid recognition of latent fingerprints and formation of inkjet-printed patterns. Angew. Chem., Int. Ed. 2011, 50, 3706–3709.

    Google Scholar 

  61. Zhang, S. J.; Liu, R. H.; Cui, Q. L.; Yang, Y.; Cao, Q.; Xu, W. Q.; Li, L. D. Ultrabright fluorescent silica nanoparticles embedded with conjugated oligomers and their application in latent fingerprint detection. ACS Appl. Mater. Interfaces 2017, 9, 44134–44145.

    Google Scholar 

  62. Kim, Y.-J.; Jung, H.-S.; Lim, J.; Ryu, S.-J.; Lee, J.-K. Rapid imaging of latent fingerprints using biocompatible fluorescent silica nanoparticles. Langmuir 2016, 32, 8077–8083.

    Google Scholar 

  63. Cho, E. C.; Glaus, C.; Chen, J. Y.; Welch, M. J.; Xia, Y. N. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 2010, 16, 561‒573.

    Google Scholar 

  64. Leggett, R.; Lee-Smith, E. E.; Jickells, S. M.; Russell, D. A. “Intelligent” fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibodyfunctionalized nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 4100–4103.

    Google Scholar 

  65. Menzel, E. R.; Takatsu, M.; Murdock, R. H.; Bouldin, K.; Cheng, K. H. Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection. J. Forensic Sci. 2000, 45, 770–773.

    Google Scholar 

  66. Xu, C. Y.; Zhao, R. H.; He, W. W.; Wu, L.; Wu, P.; Hou, X. D. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Anal. Chem. 2014, 86, 3279–3283.

    Google Scholar 

  67. Gao, F.; Lv, C. F.; Han, J. X.; Li, X. Y.; Wang, Q.; Zhang, J.; Chen, C.; Li, Q.; Sun, X. F.; Zheng, J. C. et al. CdTe–montmorillonite nanocomposites: Control synthesis, UV radiation-dependent photoluminescence, and enhanced latent fingerprint detection. J. Phys. Chem. C 2011, 115, 21574–21583.

    Google Scholar 

  68. Cai, K. Y.; Yang, R. Q.; Wang, Y. J.; Yu, X. J.; Liu, J. J. Super fast detection of latent fingerprints with water soluble CdTe quantum dots. Forensic Sci. Int. 2013, 226, 240–243.

    Google Scholar 

  69. Moret, S.; Bécue, A.; Champod, C. Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic Sci. Int. 2013, 224, 101–110.

    Google Scholar 

  70. Algarra, M.; Jiménez-Jiménez, J.; Miranda, M. S.; Campos, B. B.; Moreno-Tost, R.; Rodriguez-Castellón, E.; Esteves da Silva, J. C. G. Solid luminescent CdSe-thiolated porous phosphate heterostructures. Application in fingermark detection in different surfaces. Surf. Interface Anal. 2013, 45, 612–618.

    Google Scholar 

  71. Wu, P.; Hou, X. D.; Xu, J.-J.; Chen, H.-Y. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016, 8, 8427‒8442.

    Google Scholar 

  72. Li, Y. Q.; Xu, C. Y.; Shu, C.; Hou, X. D.; Wu, P. Simultaneous extraction of level 2 and level 3 characteristics from latent fingerprints imaged with quantum dots for improved fingerprint analysis. Chin. Chem. Lett. 2017, 28, 1961‒1964.

    Google Scholar 

  73. Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem., Int. Ed. 2012, 51, 12215‒12218.

    Google Scholar 

  74. Chen, J.; Wei, J.-S.; Zhang, P.; Niu, X.-Q.; Zhao, W.; Zhu, Z.-Y.; Ding, H.; Xiong, H.-M. Red-emissive carbon dots for fingerprints detection by spray method: Coffee ring effect and unquenched fluorescence in drying process. ACS Appl. Mater. Interfaces 2017, 9, 18429–18433.

    Google Scholar 

  75. Dilag, J.; Kobus, H.; Yu, Y.; Gibson, C. T.; Ellis, A. V. Non-toxic luminescent carbon dot/poly (dimethylacrylamide) nanocomposite reagent for latent fingermark detection synthesized via surface initiated reversible addition fragmentation chain transfer polymerization. Polym. Int. 2015, 64, 884–891.

    Google Scholar 

  76. Zhao, Y.-B.; Ma, Y.-J.; Song, D.; Liu, Y.; Luo, Y. P.; Lin, S.; Liu, C.-Y. New luminescent nanoparticles based on carbon dots/SiO2 for the detection of latent fingermarks. Anal. Methods 2017, 9, 4770–4775.

    Google Scholar 

  77. Wu, P.; Xu, C. Y.; Hou, X. D.; Xu, J.-J.; Chen, H.-Y. Dualemitting quantum dot nanohybrid for imaging of latent fingerprints: Simultaneous identification of individuals and traffic light-type visualization of TNT. Chem. Sci. 2015, 6, 4445–4450.

    Google Scholar 

  78. Dilag, J.; Kobus, H.; Ellis, A. V. Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection. Forensic Sci. Int. 2009, 187, 97–102.

    Google Scholar 

  79. Ranjan, S; Jayakumar, M. K. G.; Zhang, Y. Luminescent lanthanide nanomaterials: An emerging tool for theranostic applications. Nanomedicine 2015, 10, 1477–1491.

    Google Scholar 

  80. Wang, M.; Li, M.; Yu, A. Y.; Wu, J.; Mao, C. B. Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Appl. Mater. Interfaces 2015, 7, 28110–28115.

    Google Scholar 

  81. Chen, C. L.; Yu, Y.; Li, C. G.; Liu, D.; Huang, H.; Liang, C.; Lou, Y.; Han, Y.; Shi, Z.; Feng, S. H. Facile synthesis of highly water-soluble lanthanide-doped t-LaVO4NPs for antifake ink and latent fingermark detection. Small 2017, 13, 1702305.

    Google Scholar 

  82. Tedstone, A. A.; Lewis, D. J.; O′Brien, P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 2016, 28, 1965–1974.

    Google Scholar 

  83. Wu, P.; Pan, J.-B.; Li, X.-L.; Hou, X. D.; Xu, J.-J.; Chen, H.-Y. Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing. Chem.—Eur. J. 2015, 21, 5129–5135.

    Google Scholar 

  84. Wang, J.; Ma, Q. Q.; Liu, H. Y.; Wang, Y. Q.; Shen, H. J.; Hu, X. X.; Ma, C.; Yuan, Q.; Tan, W. H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764–12770.

    Google Scholar 

  85. Mathew, A.; Pradeep, T. Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Charact. 2014, 31, 1017–1053.

    Google Scholar 

  86. Teng, Y.; Jia, X. F.; Zhang, S.; Zhu, J. B.; Wang, E. K. A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chem. Commun. 2016, 52, 1721–1724.

    Google Scholar 

  87. Ran, X.; Wang, Z. Z.; Zhang, Z. J.; Pu, F.; Ren, J. S.; Qu, X. G. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chem. Commun. 2016, 52, 557–560.

    Google Scholar 

  88. Becue, A.; Scoundrianos, A.; Champod, C.; Margot, P. Fingermark detection based on the in situ growth of luminescent nanoparticles—Towards a new generation of multimetal deposition. Forensic Sci. Int. 2008, 179, 39–43.

    Google Scholar 

  89. Jaber, N.; Lesniewski, A.; Gabizon, H.; Shenawi, S.; Mandler, D.; Almog, J. Visualization of latent fingermarks by nanotechnology: Reversed development on paper—A remedy to the variation in sweat composition. Angew. Chem., Int. Ed. 2012, 51, 12224–12227.

    Google Scholar 

  90. He, Y. Y.; Xu, L. R.; Zhu, Y.; Wei, Q. H.; Zhang, M. Q.; Su, B. Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew. Chem., Int. Ed. 2014, 53, 12609–12612.

    Google Scholar 

  91. van Dam, A.; Aalders, M. C. G.; van Leeuwen, T. G.; Lambrechts, S. A. G. The compatibility of fingerprint visualization techniques with immunolabeling. J. Forensic Sci. 2013, 58, 999–1002.

    Google Scholar 

  92. van Dam, A.; van Nes, K. A.; Aalders, M. C. G.; van Leeuwen, T. G.; Lambrechts, S. A. G. Immunolabeling of fingermarks left on forensic relevant surfaces, including thermal paper. Anal. Methods 2014, 6, 1051–1058.

    Google Scholar 

  93. Spindler, X.; Hofstetter, O.; McDonagh, A. M.; Roux, C.; Lennard, C. Enhancement of latent fingermarks on non-porous surfaces using anti-ʟ-amino acid antibodies conjugated to gold nanoparticles. Chem. Commun. 2011, 47, 5602–5604.

    Google Scholar 

  94. Hazarika, P.; Jickells, S. M.; Wolff, K.; Russell, D. A. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew. Chem., Int. Ed. 2008, 47, 10167–10170.

    Google Scholar 

  95. Hazarika, P.; Jickells, S. M.; Wolff, K.; Russell, D. A. Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark. Anal. Chem. 2010, 82, 9150–9154.

    Google Scholar 

  96. Hazatika, P.; Jickells, S. M.; Russell, D. A. Rapid detection of drug metabolites in latent fingermarks. Analyst 2009, 134, 93–96.

    Google Scholar 

  97. Boddis, A. M.; Russell, D. A. Simultaneous development and detection of drug metabolites in latent fingermarks using antibody–magnetic particle conjugates. Anal. Methods 2011, 3, 519–523.

    Google Scholar 

  98. Boddis, A. M.; Russell, D. A. Development of aged fingermarks using antibody-magnetic particle conjugates. Anal. Methods 2012, 4, 637–641.

    Google Scholar 

  99. Akiba, N.; Kuroki, K.; Kurosawa, K.; Tsuchiya, K. Visualization of aged fingerprints with an ultraviolet laser. J. Forensic Sci. 2018, 63, 556–562.

    Google Scholar 

  100. Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 1996, 143, 2670–2673.

    Google Scholar 

  101. Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.

    Google Scholar 

  102. Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.

    Google Scholar 

  103. Wang, J.; Ma, Q. Q.; Hu, X.-X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.

    Google Scholar 

  104. Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Onedimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191.

    Google Scholar 

  105. Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Shen, H. J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204–6218.

    Google Scholar 

  106. Liu, H. Y.; Hu, X. X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solutionchemical reaction. Chin. Chem. Lett., in press, https: //doi.org/10.1016/j.cclet.2018.02.005.

  107. Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, 3898–3907.

    Google Scholar 

  108. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Google Scholar 

  109. Li, K.; Qin, W. W.; Li, F.; Zhao, X. C.; Jiang, B. W.; Wang, K.; Deng, S. H.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem., Int. Ed. 2013, 52, 11542–11545.

    Google Scholar 

  110. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

    Google Scholar 

  111. Song, K.; Huang, P.; Yi, C. L.; Ning, B.; Hu, S.; Nie, L. M.; Chen, X. Y.; Nie, Z. H. Photoacoustic and colorimetric visualization of latent fingerprints. ACS Nano 2015, 9, 12344–12348.

    Google Scholar 

  112. Peng, T. H.; Qin, W. W.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal. Chem. 2015, 87, 9403–9407.

    Google Scholar 

  113. Li, W. W.; Chen, X. Y. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015, 10, 299–320.

    Google Scholar 

  114. Zhao, L.; Wang, W.; Hu, W. H. Simultaneous transfer and imaging of latent fingerprints enabled by interfacial separation of polydopamine thin film. Anal. Chem. 2016, 88, 10357–10361.

    Google Scholar 

  115. Zhao, L.; Huang, X. Q.; Hu, W. H. Interfacial separationenabled all-dry approach for simultaneous visualization, transfer, and enhanced Raman analysis of latent fingerprints. ACS Appl. Mater. Interfaces 2017, 9, 37350–37356.

    Google Scholar 

  116. Zhang, Y. Y.; Zhou, W.; Xue, Y.; Yang, J.; Liu, D. B. Multiplexed imaging of trace residues in a single latent fingerprint. Anal. Chem. 2016, 88, 12502–12507.

    Google Scholar 

  117. Zhao, J. J.; Zhang, K.; Li, Y. X.; Ji, J.; Liu, B. H. Highresolution and universal visualization of latent fingerprints based on aptamer-functionalized core–shell nanoparticles with embedded SERS reporters. ACS Appl. Mater. Interfaces 2016, 8, 14389–14395.

    Google Scholar 

  118. Song, W.; Mao, Z.; Liu, X. J.; Lu, Y.; Li, Z. S.; Zhao, B.; Lu, L. H. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 2012, 4, 2333–2338.

    Google Scholar 

  119. Cui, J. B.; Xu, S. Y.; Guo, C.; Jiang, R.; James, T. D.; Wang, L. Y. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints. Anal. Chem. 2015, 87, 11592–11598.

    Google Scholar 

  120. Hu, L. Z.; Xu, G. B. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304.

    Google Scholar 

  121. Xu, L. R.; Li, Y.; Wu, S. Z.; Liu, X. H.; Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem., Int. Ed. 2012, 51, 8068–8072.

    Google Scholar 

  122. Xu, L. R.; Li, Y.; He, Y. Y.; Su, B. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence. Analyst 2013, 138, 2357–2362.

    Google Scholar 

  123. Xu, L. R.; Zhou, Z. Y.; Zhang, C. Z.; He, Y. Y.; Su, B. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem. Commun. 2014, 50, 9097–9100.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675120), the National Key R&D Program of China (Nos. 2017YFA0208000 and 2016YFF0100800), the National Basic Research Program of China (973 Program, No. 2015CB932600) and Ten Thousand Talents Program for Young Talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, J., Ma, Q. et al. Recent progress in background-free latent fingerprint imaging. Nano Res. 11, 5499–5518 (2018). https://doi.org/10.1007/s12274-018-2073-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2073-1

Keywords

Navigation