Skip to main content
Log in

Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) has emerged as an excellent analytical tool for the effective detection and fingerprint identification of various chemicals. Recently, significant progress has been made in the fabrication of SERS-active substrates using simple, inexpensive, and affordable methods. The full potential of universal SERS diagnostics will likely be realized with the development of approaches and devices capable of effectively detecting analytes on various surfaces as well as in multicomponent media. In addition, the combination of implantable or wearable SERS-active substrates and remote portable devices enables real-time diagnostics that ideally fit the concept of personalized medicine. In this paper, we summarize recent achievements in fabricating flexible SERS substrates made of cellulose paper, polymer membranes, and textile fibrous films. Emphasis is placed on the in-situ extraction and detection of various chemicals in real-world surfaces and complex media using flexible nanofibrous SERS platforms. The potential SERS applications and future perspectives in on-site diagnostics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

    Article  CAS  Google Scholar 

  2. Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1–20.

    Article  CAS  Google Scholar 

  3. Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

    Article  CAS  Google Scholar 

  4. Otto, A. Surface enhanced Raman scattering (SERS), what do we know? Appl. Surf. Sci. 1980, 6, 309–355.

    Article  CAS  Google Scholar 

  5. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826.

    Article  CAS  Google Scholar 

  6. Kneipp, K.; Hinzmann, G.; Fassler, D. Surface-enhanced Raman scattering of polymethine dyes on silver colloidal particles. Chem. Phys. Lett. 1983, 99, 503–506.

    Article  CAS  Google Scholar 

  7. Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.

    Article  CAS  Google Scholar 

  8. Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 1996, 76, 2444–2447.

    Article  CAS  Google Scholar 

  9. Safonov, V. P.; Shalaev, V. M.; Markel, V. A.; Danilova, Y. E.; Lepeshkin, N. N.; Kim, W.; Rautian, S. G.; Armstrong, R. L. Spectral dependence of selective photomodification in fractal aggregates of colloidal particles. Phys. Rev. Lett. 1998, 80, 1102–1105.

    Article  CAS  Google Scholar 

  10. Zhang, G. N.; Qu, G.; Chen, Y.; Shen, A. G.; Xie, W.; Zhou, X. D.; Hu, J. M. Controlling carbon encapsulation of gold nano-aggregates as highly sensitive and spectrally stable SERS tags for live cell imaging. J. Mater. Chem. B 2013, 1, 4364–4369.

    Article  CAS  Google Scholar 

  11. Shiohara, A.; Wang, Y. S.; Liz-Marzán, L. M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 2–25.

    Article  CAS  Google Scholar 

  12. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  13. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  CAS  Google Scholar 

  14. Wang, Y.; Irudayaraj, J. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Philos. Trans. R. Soc. B Biol. Sci. 2012, 368, 20120026.

    Article  CAS  Google Scholar 

  15. Giner-Casares, J. J.; Liz-Marzán, L. M. Plasmonic nanoparticles in 2D for biological applications: Toward active multipurpose platforms. Nano Today 2014, 9, 365–377.

    Article  CAS  Google Scholar 

  16. Luo, S.-C.; Sivashanmugan, K.; Liao, J.-D.; Yao, C.-K.; Peng, H.-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 2014, 61, 232–240.

    Article  CAS  Google Scholar 

  17. Xie, W.; Walkenfort, B.; Schlücker, S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 2013, 135, 1657–1660.

    Article  CAS  Google Scholar 

  18. Cui, Q. L.; Shen, G. Z.; Yan, X. H.; Li, L. D.; Möhwald, H.; Bargheer, M. Fabrication of Au@Pt multibranched nanoparticles and their application to in situ SERS monitoring. ACS Appl. Mater. Interfaces 2014, 6, 17075–17081.

    Article  CAS  Google Scholar 

  19. Thomas, M.; Mühlig, S.; Deckert-Gaudig, T.; Rockstuhl, C.; Deckert, V.; Marquetand, P. Distinguishing chemical and electromagnetic enhancement in surface-enhanced Raman spectra: The case of para-nitrothiophenol. J. Raman Spectrosc. 2013, 44, 1497–1505.

    Article  CAS  Google Scholar 

  20. Muniz-Miranda, M. Application of the SERS spectroscopy to the study of catalytic reactions by means of mono and bimetallic nanoparticles. J. Anal. Bioanal. Tech. 2015, 6, 286.

    Google Scholar 

  21. Wang, Y. L.; Seebald, J. L.; Szeto, D. P.; Irudayaraj, J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging. ACS Nano 2010, 4, 4039–4053.

    Article  CAS  Google Scholar 

  22. Vo-Dinh, T.; Wang, H.-N.; Scaffidi, J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophotonics 2009, 3, 89–102.

    Article  CAS  Google Scholar 

  23. Giner-Casares, J. J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L. M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19–28.

    Article  CAS  Google Scholar 

  24. Harmsen, S.; Huang, R. M.; Wall, M. A.; Karabeber, H.; Samii, J. M.; Spaliviero, M.; White, J. R.; Monette, S.; O’Connor, R.; Pitter, K. L. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 2015, 7, 271ra7.

    Article  CAS  Google Scholar 

  25. Wang, X.; Qian, X. M.; Beitler, J. J.; Chen, Z. G.; Khuri, F. R.; Lewis, M. M.; Shin, H. J. C.; Nie, S. M.; Shin, D. M. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 2011, 71, 1526–1532.

    Article  CAS  Google Scholar 

  26. Karabeber, H.; Huang, R. M.; Iacono, P.; Samii, J. M.; Pitter, K. L.; Holland, E. C.; Kircher, M. F. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 2014, 8, 9755–9766.

    Article  CAS  Google Scholar 

  27. Fan, M. K.; Andrade, G. F. S.; Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25.

    Article  CAS  Google Scholar 

  28. Polavarapu, L.; Liz-Marzán, L. M. Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 2013, 15, 5288–5300.

    Article  CAS  Google Scholar 

  29. Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611.

    Article  CAS  Google Scholar 

  30. Schmidt, M. S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 2011, 24, OP11–OP18.

    Google Scholar 

  31. Leordean, C.; Gabudean, A.-M.; Canpean, V.; Astilean, S. Easy and cheap fabrication of ordered pyramidal-shaped plasmonic substrates for detection and quantitative analysis using surface-enhanced Raman spectroscopy. Analyst 2013, 138, 4975–4981.

    Article  CAS  Google Scholar 

  32. Merk, V.; Kneipp, J.; Leosson, K. Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth. Adv. Opt. Mater. 2013, 1, 313–318.

    Article  Google Scholar 

  33. Saracut, V.; Giloan, M.; Gabor, M.; Astilean, S.; Farcau, C. Polarization-sensitive linear plasmonic nanostructures via colloidal lithography with uniaxial colloidal arrays. ACS Appl. Mater. Interfaces 2013, 5, 1362–1369.

    Article  CAS  Google Scholar 

  34. Keating, M.; Song, S.; Wei, G.; Graham, D.; Chen, Y.; Placido, F. Ordered silver and copper nanorod arrays for enhanced Raman scattering created via guided oblique angle deposition on polymer. J. Phys. Chem. C 2014, 118, 4878–4884.

    Article  CAS  Google Scholar 

  35. Chen, B. S.; Meng, G. W.; Zhou, F.; Huang, Q.; Zhu, C. H.; Hu, X. Y.; Kong, M. G. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs. Nanotechnology 2014, 25, 145605.

    Article  CAS  Google Scholar 

  36. Ou, F. S.; Hu, M.; Naumov, I.; Kim, A.; Wu, W.; Bratkovsky, A. M.; Li, X. M.; Williams, R. S.; Li, Z. Y. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett. 2011, 11, 2538–2542.

    Article  CAS  Google Scholar 

  37. Wu, H.-Y.; Choi, C. J.; Cunningham, B. T. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array. Small 2012, 8, 2878–2885.

    Article  CAS  Google Scholar 

  38. Yang, J.; Palla, M.; Bosco, F. G.; Rindzevicius, T.; Alstrøm, T. S.; Schmidt, M. S.; Boisen, A.; Ju, J. Y.; Lin, Q. Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 2013, 7, 5350–5359.

    Article  CAS  Google Scholar 

  39. Wu, K. Y.; Rindzevicius, T.; Schmidt, M. S.; Mogensen, K. B.; Hakonen, A.; Boisen, A. Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations. J. Phys. Chem. C 2015, 119, 2053–2062.

    Article  CAS  Google Scholar 

  40. Serrano-Montes, A. B.; Jimenez de Aberasturi, D.; Langer, J.; Giner-Casares, J. J.; Scarabelli, L.; Herrero, A.; Liz-Marzán, L. M. A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers. Langmuir 2015, 31, 9205–9213.

    Article  CAS  Google Scholar 

  41. Hu, X. G.; Cheng, W. L.; Wang, T.; Wang, Y. L.; Wang, E. K.; Dong, S. J. Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films. J. Phys. Chem. B 2005, 109, 19385–19389.

    Article  CAS  Google Scholar 

  42. Pazos-Pérez, N.; Wagner, C. S.; Romo-Herrera, J. M.; Liz-Marzán, L. M.; García de Abajo, F. J.; Wittemann, A.; Fery, A.; Álvarez-Puebla, R. A. Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). Angew. Chem., Int. Ed. 2012, 51, 12688–12693.

    Article  CAS  Google Scholar 

  43. Leiterer, C.; Zopf, D.; Seise, B.; Jahn, F.; Weber, K.; Popp, J.; Cialla-May, D.; Fritzsche, W. Fast self-assembly of silver nanoparticle monolayer in hydrophobic environment and its application as SERS substrate. J. Nanoparticle Res. 2014, 16, 2467.

    Article  CAS  Google Scholar 

  44. Lee, Y. H.; Lee, C. K.; Tan, B. R.; Rui Tan, J. M.; Phang, I. Y.; Ling, X. Y. Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

    Article  CAS  Google Scholar 

  45. La Porta, A.; Grzelczak, M.; Liz-Marzán, L. M. Gold nanowire forests for SERS detection. ChemistryOpen 2014, 3, 146–151.

    Article  CAS  Google Scholar 

  46. Abdelsalam, M. E.; Mahajan, S.; Bartlett, P. N.; Baumberg, J. J.; Russell, A. E. SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc. 2007, 129, 7399–7406.

    Article  CAS  Google Scholar 

  47. Khanadeev, V. A.; Khlebtsov, B. N.; Klimova, S. A.; Tsvetkov, M. Y.; Bagratashvili, V. N.; Sukhorukov, G. B.; Khlebtsov, N. G. Large-scale high-quality 2D silica crystals: Dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis. Nanotechnology 2014, 25, 405602.

    Article  CAS  Google Scholar 

  48. Pazos-Pérez, N.; Ni, W. H.; Schweikart, A.; Álvarez-Puebla, R. A.; Fery, A.; Liz-Marzán, L. M. Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem. Sci. 2010, 1, 174–178.

    Article  CAS  Google Scholar 

  49. Lee, J.; Seo, J.; Kim, D.; Shin, S.; Lee, S.; Mahata, C.; Lee, H.-S.; Min, B.-W.; Lee, T. Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates. ACS Appl. Mater. Interfaces 2014, 6, 9053–9060.

    Article  CAS  Google Scholar 

  50. Kneipp, J.; Kneipp, H.; McLaughlin, M.; Brown, D.; Kneipp, K. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett. 2006, 6, 2225–2231.

    Article  CAS  Google Scholar 

  51. Radziuk, D.; Schuetz, R.; Masic, A.; Moehwald, H. Chemical imaging of live fibroblasts by SERS effective nanofilm. Phys. Chem. Chem. Phys. 2014, 16, 24621–24634.

    Article  CAS  Google Scholar 

  52. Yashchenok, A.; Masic, A.; Gorin, D.; Shim, B. S.; Kotov, N. A.; Fratzl, P.; Möhwald, H.; Skirtach, A. Nanoengineered colloidal probes for Raman-based detection of biomolecules inside living cells. Small 2013, 9, 351–356.

    Article  CAS  Google Scholar 

  53. Stetciura, I. Y.; Yashchenok, A. M.; Masic, A.; Lyubin, E. V.; Inozemtseva, O. A.; Drozdova, M. G.; Markvichova, E. A.; Khlebtsov, B. N.; Fedyanin, A. A.; Sukhorukov, G. B. et al. Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst 2015, 140, 4981–4986.

    Article  CAS  Google Scholar 

  54. Ahijado-Guzmán, R.; Gómez-Puertas, P.; Álvarez-Puebla, R. A.; Rivas, G.; Liz-Marzán, L. M. Surface-enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS Nano 2012, 6, 7514–7520.

    Article  CAS  Google Scholar 

  55. Xu, L. G.; Kuang, H.; Xu, C. L.; Ma, W.; Wang, L. B.; Kotov, N. A. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 2012, 134, 1699–1709.

    Article  CAS  Google Scholar 

  56. Xu, L. J.; Lei, Z. C.; Li, J. X.; Zong, C.; Yang, C. J.; Ren, B. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J. Am. Chem. Soc. 2015, 137, 5149–5154.

    Article  CAS  Google Scholar 

  57. Xu, L.-J.; Zong, C.; Zheng, X.-S.; Hu, P.; Feng, J.-M.; Ren, B. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 2014, 86, 2238–2245.

    Article  CAS  Google Scholar 

  58. Bodelón, G.; Montes-García, V.; López-Puente, V.; Hill, E. H.; Hamon, C.; Sanz-Ortiz, M. N.; Rodal-Cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-Juste, I. et al. Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater. 2016, 15, 1203–1211.

    Article  CAS  Google Scholar 

  59. De Angelis, F.; Gentile, F.; Mecarini, F.; Das, G.; Moretti, M.; Candeloro, P.; Coluccio, M. L.; Cojoc, G.; Accardo, A.; Liberale, C. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 2011, 5, 682–687.

    Article  CAS  Google Scholar 

  60. Zhai, W.-L.; Li, D.-W.; Qu, L.-L.; Fossey, J. S.; Long, Y.-T. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale 2012, 4, 137–142.

    Article  CAS  Google Scholar 

  61. Tian, L. M.; Luan, J. Y.; Liu, K.-K.; Jiang, Q. S.; Tadepalli, S.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Plasmonic biofoam: A versatile optically active material. Nano Lett. 2016, 16, 609–616.

    Article  CAS  Google Scholar 

  62. Tian, L. M.; Jiang, Q. S.; Liu, K.-K.; Luan, J. Y.; Naik, R. R.; Singamaneni, S. Bacterial nanocellulose-based flexible surface enhanced Raman scattering substrate. Adv. Mater. Interfaces 2016, 3, 1600214.

    Article  CAS  Google Scholar 

  63. Gong, Z. J.; Wang, C. C.; Wang, C.; Tang, C. Y.; Cheng, F. S.; Du, H. J.; Fan, M. K.; Brolo, A. G. A silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst 2014, 139, 5283–5289.

    Article  CAS  Google Scholar 

  64. Gong, Z. J.; Wang, C. C.; Pu, S.; Wang, C.; Cheng, F. S.; Wang, Y. H.; Fan, M. K. Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Anal. Methods 2016, 8, 4816–4820.

    Article  CAS  Google Scholar 

  65. Park, M.; Chang, H.; Jeong, D. H.; Hyun, J. Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J. 2013, 7, 234–241.

    Article  CAS  Google Scholar 

  66. Park, S.-G.; Ahn, M.-S.; Oh, Y.-J.; Kang, M.; Jeong, Y.; Jeong, K.-H. Nanoplasmonic biopatch for in vivo surface enhanced Raman spectroscopy. BioChip J. 2014, 8, 289–294.

    Article  CAS  Google Scholar 

  67. Fernández-López, C.; Polavarapu, L.; Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanorod–pNIPAM hybrids with reversible plasmon coupling: Synthesis, modeling, and SERS properties. ACS Appl. Mater. Interfaces 2015, 7, 12530–12538.

    Article  CAS  Google Scholar 

  68. Álvarez-Puebla, R. A.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew. Chem., Int. Ed. 2009, 48, 138–143.

    Article  CAS  Google Scholar 

  69. Contreras-Cáceres, R.; Abalde-Cela, S.; Guardia-Girós, P.; Fernández-Barbero, A.; Pérez-Juste, J.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M. Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 2011, 27, 4520–4525.

    Article  CAS  Google Scholar 

  70. Aldeanueva-Potel, P.; Faoucher, E.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Brust, M. Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. Anal. Chem. 2009, 81, 9233–9238.

    Article  CAS  Google Scholar 

  71. Lee, S. J.; Moskovits, M. Remote sensing by plasmonic transport. J. Am. Chem. Soc. 2012, 134, 11384–11387.

    Article  CAS  Google Scholar 

  72. Qian, X. M.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83–90.

    Article  CAS  Google Scholar 

  73. Sanles-Sobrido, M.; Exner, W.; Rodríguez-Lorenzo, L.; Rodríguez-González, B.; Correa-Duarte, M. A.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J. Am. Chem. Soc. 2009, 131, 2699–2705.

    Article  CAS  Google Scholar 

  74. Samanta, A.; Maiti, K. K.; Soh, K. S.; Liao, X. J.; Vendrell, M.; Dinish, U. S.; Yun, S. W.; Bhuvaneswari, R.; Kim, H.; Rautela, S. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem., Int. Ed. 2011, 50, 6089–6092.

    Article  CAS  Google Scholar 

  75. Samanta, A.; Das, R. K.; Park, S. J.; Maiti, K. K.; Chang, Y. T. Multiplexing SERS nanotags for the imaging of differentiated mouse embryonic stem cells (mESC) and detection of teratoma in vivo. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 114–124.

    CAS  Google Scholar 

  76. Gandra, N.; Singamaneni, S. Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv. Mater. 2013, 25, 1022–1027.

    Article  CAS  Google Scholar 

  77. Zhao, Y.; Sun, L.; Xi, M.; Feng, Q.; Jiang, C. Y.; Fong, H. Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl. Mater. Interfaces 2014, 6, 5759–5767.

    Article  CAS  Google Scholar 

  78. Lin, S.; Hasi, W.-L.-J.; Lin, X.; Han, S.; Lou, X.-T.; Yang, F.; Lin, D.-Y.; Lu, Z.-W. Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates. Anal. Methods 2015, 7, 5289–5294.

    Article  CAS  Google Scholar 

  79. Khlebtsov, B.; Pylaev, T.; Khanadeev, V.; Bratashov, D.; Khlebtsov, N. Quantitative and multiplex dot-immunoassay using gap-enhanced Raman tags. RSC Adv. 2017, 7, 40834–40841.

    Article  CAS  Google Scholar 

  80. Yang, X.; Gu, C.; Qian, F.; Li, Y.; Zhang, J. Z. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem. 2011, 83, 5888–5894.

    Article  CAS  Google Scholar 

  81. Dinish, U. S.; Fu, C. Y.; Soh, K. S.; Ramaswamy, B.; Kumar, A.; Olivo, M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 2012, 33, 293–298.

    Article  CAS  Google Scholar 

  82. Zavaleta, C. L.; Garai, E.; Liu, J. T. C.; Sensarn, S.; Mandella, M. J.; Van de Sompel, D.; Friedland, S.; Van Dam, J.; Contag, C. H.; Gambhir, S. S. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl. Acad. Sci. USA 2013, 110, 10062–10063.

    Article  Google Scholar 

  83. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10.

    Article  CAS  Google Scholar 

  84. Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42, 450–457.

    Article  CAS  Google Scholar 

  85. Jia, H. Y.; Wang, J.; Zhang, X. Y.; Wang, Y. P. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Lett. 2014, 3, 86–90.

    Article  CAS  Google Scholar 

  86. Jason, N. N.; Shen, W.; Cheng, W. L. Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl. Mater. Interfaces 2015, 7, 16760–16766.

    Article  CAS  Google Scholar 

  87. Kumar, S.; Bhat, V.; Vinoy, K. J.; Santhanam, V. Using an office inkjet printer to define the formation of copper films on paper. IEEE Trans. Nanotechnol. 2014, 13, 160–164.

    Article  CAS  Google Scholar 

  88. Tseng, S.-C.; Yu, C.-C.; Wan, D. H.; Chen, H.-L.; Wang, L. A.; Wu, M.-C.; Su, W.-F.; Han, H.-C.; Chen, L.-C. Eco-friendly plasmonic sensors: Using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal. Chem. 2012, 84, 5140–5145.

    Article  CAS  Google Scholar 

  89. Russo, A.; Ahn, B. Y.; Adams, J. J.; Duoss, E. B.; Bernhard, J. T.; Lewis, J. A. Pen-on-paper flexible electronics. Adv. Mater. 2011, 23, 3426–3430.

    Article  CAS  Google Scholar 

  90. Kim, Y. T.; Chen, Y. C.; Choi, J. Y.; Kim, W.-J.; Dae, H.-M.; Jung, J.; Seo, T. S. Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosens. Bioelectron. 2012, 33, 88–94.

    Article  CAS  Google Scholar 

  91. He, Y. Q.; Zhang, S. Q.; Zhang, X. B.; Baloda, M.; Gurung, A. S.; Xu, H.; Zhang, X. J.; Liu, G. D. Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosens. Bioelectron. 2011, 26, 2018–2024.

    Article  CAS  Google Scholar 

  92. Li, C. Z.; Vandenberg, K.; Prabhulkar, S.; Zhu, X. N.; Schneper, L.; Methee, K.; Rosser, C. J.; Almeide, E. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron. 2011, 26, 4342–4348.

    Article  CAS  Google Scholar 

  93. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M. Three- dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611.

    Article  Google Scholar 

  94. Carrilho, E.; Phillips, S. T.; Vella, S. J.; Martinez, A. W.; Whitesides, G. M. Paper microzone plates. Anal. Chem. 2009, 81, 5990–5998.

    Article  CAS  Google Scholar 

  95. Shin, K.-Y.; Hong, J.-Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 2011, 23, 2113–2118.

    Article  CAS  Google Scholar 

  96. Kamyshny, A.; Magdassi, S. Conductive nanomaterials for printed electronics. Small 2014, 10, 3515–3535.

    Article  CAS  Google Scholar 

  97. Yao, B.; Yuan, L. Y.; Xiao, X.; Zhang, J.; Qi, Y. Y.; Zhou, J.; Zhou, J.; Hu, B.; Chen, W. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2013, 2, 1071–1078.

    Article  CAS  Google Scholar 

  98. Schmucker, A. L.; Tadepalli, S.; Liu, K.-K.; Sullivan, C. J.; Singamaneni, S.; Naik, R. R. Plasmonic paper: A porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Adv. 2016, 6, 4136–4144.

    Article  CAS  Google Scholar 

  99. Ross, M. B.; Ashley, M. J.; Schmucker, A. L.; Singamaneni, S.; Naik, R. R.; Schatz, G. C.; Mirkin, C. A. Structure–function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 2016, 120, 20789–20797.

    Article  CAS  Google Scholar 

  100. Tian, L. M.; Morrissey, J. J.; Kattumenu, R.; Gandra, N.; Kharasch, E. D.; Singamaneni, S. Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 2012, 84, 9928–9934.

    Article  CAS  Google Scholar 

  101. Polavarapu, L.; La Porta, A.; Novikov, S. M.; Coronado-Puchau, M.; Liz-Marzán, L. M. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 2014, 10, 3065–3071.

    Article  CAS  Google Scholar 

  102. Tran, C. D. Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry. Anal. Chem. 1984, 56, 824–826.

    Article  CAS  Google Scholar 

  103. Lee, C. H.; Hankus, M. E.; Tian, L. M.; Pellegrino, P. M.; Singamaneni, S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 2011, 83, 8953–8958.

    Article  CAS  Google Scholar 

  104. Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Gold nanoparticle–paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir 2012, 28, 8782–8790.

    Article  CAS  Google Scholar 

  105. Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 2013, 392, 237–246.

    Article  CAS  Google Scholar 

  106. Hasi, W.-L.-J.; Lin, S.; Lin, X.; Lou, X.-T.; Yang, F.; Lin, D.-Y.; Lu, Z.-W. Rapid fabrication of self-assembled interfacial film decorated filter paper as an excellent surface-enhanced Raman scattering substrate. Anal. Methods 2014, 6, 9547–9553.

    Article  CAS  Google Scholar 

  107. Zhang, W.; Li, B. W.; Chen, L. X.; Wang, Y. Q.; Gao, D. X.; Ma, X. H.; Wu, A. G. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 2014, 6, 2066–2071.

    Article  CAS  Google Scholar 

  108. Cheng, M.-L.; Tsai, B.-C.; Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 2011, 708, 89–96.

    Article  CAS  Google Scholar 

  109. Kim, W.; Lee, J.-C.; Shin, J.-H.; Jin, K.-H.; Park, H.-K.; Choi, S. Instrument-free synthesizable fabrication of label-free optical biosensing paper strips for the early detection of infectious keratoconjunctivitides. Anal. Chem. 2016, 88, 5531–5537.

    Article  CAS  Google Scholar 

  110. Joshi, P.; Santhanam, V. Paper-based SERS active substrates on demand. RSC Adv. 2016, 6, 68545–68552.

    Article  CAS  Google Scholar 

  111. Qu, L.-L.; Li, D.-W.; Xue, J.-Q.; Zhai, W.-L.; Fossey, J. S.; Long, Y.-T. Batch fabrication of disposable screen printed SERS arrays. Lab Chip 2012, 12, 876–881.

    Article  CAS  Google Scholar 

  112. Zheng, G. C.; Polavarapu, L.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanoparticle-loaded filter paper: A recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem. Commun. 2015, 51, 4572–4575.

    Article  CAS  Google Scholar 

  113. He, S.; Chua, J.; Tan, E. K. M.; Kah, J. C. Y. Optimizing the SERS enhancement of a facile gold nanostar immobilized paper-based SERS substrate. RSC Adv. 2017, 7, 16264–16272.

    Article  CAS  Google Scholar 

  114. Mehn, D.; Morasso, C.; Vanna, R.; Bedoni, M.; Prosperi, D.; Gramatica, F. Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vib. Spectrosc. 2013, 68, 45–50.

    Article  CAS  Google Scholar 

  115. Yu, W. W.; White, I. M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 2010, 82, 9626–9630.

    Article  CAS  Google Scholar 

  116. Hoppmann, E. P.; Yu, W. W.; White, I. M. Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 2013, 63, 219–224.

    Article  CAS  Google Scholar 

  117. Liao, W.-J.; Roy, P. K.; Chattopadhyay, S. An ink-jet printed, surface enhanced Raman scattering paper for food screening. RSC Adv. 2014, 4, 40487–40493.

    Article  CAS  Google Scholar 

  118. Zhang, R.; Xu, B.-B.; Liu, X.-Q.; Zhang, Y.-L.; Xu, Y.; Chen, Q.-D.; Sun, H.-B. Highly efficient SERS test strips. Chem. Commun. 2012, 48, 5913–5915.

    Article  CAS  Google Scholar 

  119. Fan, M. K.; Zhang, Z. G.; Hu, J. M.; Cheng, F. S.; Wang, C.; Tang, C. Y.; Lin, J. H.; Brolo, A. G.; Zhan, H. Q. Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater. Lett. 2014, 133, 57–59.

    Article  CAS  Google Scholar 

  120. Chen, J.; Wu, X. M.; Huang, Y.-W.; Zhao, Y. P. Detection of E. coli using SERS active filters with silver nanorod array. Sensors Actuators B Chem. 2014, 191, 485–490.

    Article  CAS  Google Scholar 

  121. Zhu, Y. Q.; Li, M. Q.; Yu, D. Y.; Yang, L. B. A novel paper rag as “D-SERS” substrate for detection of pesticide residues at various peels. Talanta 2014, 128, 117–124.

    Article  CAS  Google Scholar 

  122. Yu, C.-C.; Chou, S.-Y.; Tseng, Y.-C.; Tseng, S.-C.; Yen, Y.-T.; Chen, H.-L. Single-shot laser treatment provides quasi-three- dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 2015, 7, 1667–1677.

    Article  CAS  Google Scholar 

  123. Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Yong, T.; Ma, Z. W.; Ramaseshan, R. Electrospun nanofibers: Solving global issues. Mater. Today 2006, 9, 40–50.

    Article  CAS  Google Scholar 

  124. Inozemtseva, O. A.; Salkovskiy, Y. E.; Severyukhina, A. N.; Vidyasheva, I. V.; Petrova, N. V.; Metwally, H. A.; Stetciura, I. Y.; Gorin, D. A. Electrospinning of functional materials for biomedicine and tissue engineering. Russ. Chem. Rev. 2015, 84, 251–274.

    Article  CAS  Google Scholar 

  125. Martins, A.; Araújo, J. V.; Reis, R. L.; Neves, N. M. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine 2007, 2, 929–942.

    Article  Google Scholar 

  126. Chen, C.; Tang, Y.; Vlahovic, B.; Yan, F. Electrospun polymer nanofibers decorated with noble metal nanoparticles for chemical sensing. Nanoscale Res. Lett. 2017, 12, 451.

    Article  CAS  Google Scholar 

  127. He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993–4002.

    Article  CAS  Google Scholar 

  128. Zhang, C.-L.; Lv, K.-P.; Cong, H.-P.; Yu, S.-H. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small 2012, 8, 648–653.

    Article  CAS  Google Scholar 

  129. Bao, Y.; Lai, C. L.; Zhu, Z. T.; Fong, H.; Jiang, C. Y. SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv. 2013, 3, 8998–9004.

    Article  CAS  Google Scholar 

  130. Zhang, L. F.; Gong, X.; Bao, Y.; Zhao, Y.; Xi, M.; Jiang, C. Y.; Fong, H. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Langmuir 2012, 28, 14433–14440.

    Article  CAS  Google Scholar 

  131. Lee, C. H.; Tian, L. M.; Abbas, A.; Kattumenu, R.; Singamaneni, S. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology 2011, 22, 275311.

    Article  CAS  Google Scholar 

  132. Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.

    Article  CAS  Google Scholar 

  133. Severyukhina, A. N.; Parakhonskiy, B. V.; Prikhozhdenko, E. S.; Gorin, D. A.; Sukhorukov, G. B.; Möhwald, H.; Yashchenok, A. M. Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules. ACS Appl. Mater. Interfaces 2015, 7, 15466–15473.

    Article  CAS  Google Scholar 

  134. Yang, H.; Huang, C. Z. Polymethacrylic acid–facilitated nanofiber matrix loading Ag nanoparticles for SERS measurements. RSC Adv. 2014, 4, 38783–38790.

    Article  CAS  Google Scholar 

  135. Yang, T.; Yang, H.; Zhen, S. J.; Huang, C. Z. Hydrogen- bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl. Mater. Interfaces 2015, 7, 1586–1594.

    Article  CAS  Google Scholar 

  136. Szymborski, T.; Witkowska, E.; Adamkiewicz, W.; Waluk, J.; Kamińska, A. Electrospun polymer mat as a SERS platform for the immobilization and detection of bacteria from fluids. Analyst 2014, 139, 5061–5064.

    Article  CAS  Google Scholar 

  137. Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937.

    Article  CAS  Google Scholar 

  138. Qu, L.-L.; Geng, Y.-Y.; Bao, Z.-N.; Riaz, S.; Li, H. T. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim. Acta 2016, 183, 1307–1313.

    Article  CAS  Google Scholar 

  139. Liu, Z. C.; Yan, Z. D.; Jia, L.; Song, P.; Mei, L. Y.; Bai, L.; Liu, Y. Q. Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate. Appl. Surf. Sci. 2017, 403, 29–34.

    Article  CAS  Google Scholar 

  140. Zhang, C.-L.; Lv, K.-P.; Huang, H.-T.; Cong, H.-P.; Yu, S.-H. Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning. Nanoscale 2012, 4, 5348–5355.

    Article  CAS  Google Scholar 

  141. Tang, B.; Li, J. L.; Hou, X. L.; Afrin, T.; Sun, L.; Wang, X. G. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 4556–4563.

    Article  CAS  Google Scholar 

  142. Camposeo, A.; Spadaro, D.; Magrì, D.; Moffa, M.; Gucciardi, P. G.; Persano, L.; Maragò, O. M.; Pisignano, D. Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods. Anal. Bioanal. Chem. 2016, 408, 1357–1364.

    Article  CAS  Google Scholar 

  143. Wang, L.; Sun, Y. J.; Wang, J. K.; Li, Z. Assembly of gold nanoparticles on electrospun polymer nanofiber film for SERS applications. Bull. Korean Chem. Soc. 2014, 35, 30–34.

    Article  CAS  Google Scholar 

  144. Zhang, W.-Y.; Xiao, X.-Z.; Lv, C.; Zhao, J.; Wang, G.; Gu, X.; Zhang, R.; Xu, B.-B.; Zhang, D.-D.; Li, A.-W. et al. Fabrication of photopolymer hierarchical micronanostructures by coupling electrospinning and photolithography for SERS substrates. Macromol. Res. 2013, 21, 306–310.

    Article  CAS  Google Scholar 

  145. Ren, S. X.; Dong, L. L.; Zhang, X. Q.; Lei, T. Z.; Ehrenhauser, F.; Song, K. L.; Li, M. C.; Sun, X. X.; Wu, Q. L. Electrospun nanofibers made of silver nanoparticles, cellulose nanocrystals, and polyacrylonitrile as substrates for surface-enhanced Raman scattering. Materials 2017, 10, 68.

    Article  CAS  Google Scholar 

  146. Rivero, P. J.; Urrutia, A.; Goicoechea, J.; Arregui, F. J. Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 2015, 10, 501.

    Article  CAS  Google Scholar 

  147. Johnston, J. H.; Lucas, K. A. Nanogold synthesis in wool fibres: Novel colourants. Gold Bull. 2011, 44, 85–89.

    Article  CAS  Google Scholar 

  148. Kelly, F. M.; Johnston, J. H. Colored and functional silver nanoparticle−wool fiber composites. ACS Appl. Mater. Interfaces 2011, 3, 1083–1092.

    Article  CAS  Google Scholar 

  149. Tang, B.; Zhang, M. W.; Hou, X. L.; Li, J. L.; Sun, L.; Wang, X. G. Coloration of cotton fibers with anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 2012, 51, 12807–12813.

    Article  CAS  Google Scholar 

  150. Tang, B.; Wang, J. F.; Xu, S. P.; Afrin, T.; Xu, W. Q.; Sun, L.; Wang, X. G. Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. J. Colloid Interface Sci. 2011, 356, 513–518.

    Article  CAS  Google Scholar 

  151. Zheng, Y. D.; Xiao, M. D.; Jiang, S. X.; Ding, F.; Wang, J. F. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions. Nanoscale 2013, 5, 788–795.

    Article  CAS  Google Scholar 

  152. Wang, R. H.; Wang, X. W.; Xin, J. H. Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl. Mater. Interfaces 2010, 2, 82–85.

    Article  CAS  Google Scholar 

  153. Wang, L. L.; Zhang, X. T.; Li, B.; Sun, P. P.; Yang, J. K.; Xu, H. Y.; Liu, Y. C. Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl. Mater. Interfaces 2011, 3, 1277–1281.

    Article  CAS  Google Scholar 

  154. Tang, B.; Sun, L.; Kaur, J.; Yu, Y.; Wang, X. G. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dye. Pigment. 2014, 103, 183–190.

    Article  CAS  Google Scholar 

  155. Robinson, A. M.; Zhao, L. L.; Shah Alam, M. Y.; Bhandari, P.; Harroun, S. G.; Dendukuri, D.; Blackburn, J.; Brosseau, C. L. The development of “fab-chips” as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst 2015, 140, 779–785.

    Article  CAS  Google Scholar 

  156. Liu, J.; Zhou, J.; Tang, B.; Zeng, T.; Li, Y. L.; Li, J. L.; Ye, Y.; Wang, X. G. Surface enhanced Raman scattering (SERS) fabrics for trace analysis. Appl. Surf. Sci. 2016, 386, 296–302.

    Article  CAS  Google Scholar 

  157. Tran, C. D. In situ identification of paper chromatogram spots by surface enhanced Raman scattering. J. Chromatogr. A 1984, 292, 432–438.

    Article  CAS  Google Scholar 

  158. Cabalín, L. M.; Laserna, J. J. Fast spatially resolved surface-enhanced Raman spectrometry on a silver coated filter paper using charge-coupled device detection. Anal. Chim. Acta 1995, 310, 337–345.

    Article  Google Scholar 

  159. Lee, C. H.; Tian, L. M.; Singamaneni, S. Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl. Mater. Interfaces 2010, 2, 3429–3435.

    Article  CAS  Google Scholar 

  160. Nergiz, S. Z.; Gandra, N.; Farrell, M. E.; Tian, L. M.; Pellegrino, P. M.; Singamaneni, S. Biomimetic SERS substrate: Peptide recognition elements for highly selective chemical detection in chemically complex media. J. Mater. Chem. A 2013, 1, 6543–6549.

    Article  CAS  Google Scholar 

  161. Webb, J. A.; Aufrecht, J.; Hungerford, C.; Bardhan, R. Ultrasensitive analyte detection with plasmonic paper dipsticks and swabs integrated with branched nanoantennas. J. Mater. Chem. C 2014, 2, 10446–10454.

    Article  CAS  Google Scholar 

  162. Diagnostic anSERS Inc. Sensitive, flexible SERS substrates for your chemical diagnostic needs [Online]. https://doi.org/www.diagnosticansers.com/ (accessed Oct 14, 2017).

  163. Tian, L. M.; Tadepalli, S.; Hyun Park, S.; Liu, K.-K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R.; Singamaneni, S. Bioplasmonic calligraphy for multiplexed label-free biodetection. Biosens. Bioelectron. 2014, 59, 208–215.

    Article  CAS  Google Scholar 

  164. Tian, L. M.; Tadepalli, S.; Farrell, M. E.; Liu, K.-K.; Gandra, N.; Pellegrino, P. M.; Singamaneni, S. Multiplexed charge-selective surface enhanced Raman scattering based on plasmonic calligraphy. J. Mater. Chem. C 2014, 2, 5438–5446.

    Article  CAS  Google Scholar 

  165. Yu, W. W.; White, I. M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138, 1020–1025.

    Article  CAS  Google Scholar 

  166. Yu, W. W.; White, I. M. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 2013, 138, 3679–3686.

    Article  CAS  Google Scholar 

  167. Berger, A. G.; Restaino, S. M.; White, I. M. Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 2017, 949, 59–66.

    Article  CAS  Google Scholar 

  168. Berger, A. G.; White, I. M. Therapeutic drug monitoring of flucytosine in serum using a SERS-active membrane system. In Proc. SPIE 10081, Frontiers in Biological Detection: From Nanosensors to Systems IX, San Francisco, California, United States, 2017; pp. 1008104.

    Google Scholar 

  169. Maneeprakorn, W.; Bamrungsap, S.; Apiwat, C.; Wiriyachaiporn, N. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Adv. 2016, 6, 112079–112085.

    Article  CAS  Google Scholar 

  170. Abbas, A.; Brimer, A.; Slocik, J. M.; Tian, L. M.; Naik, R. R.; Singamaneni, S. Multifunctional analytical platform on a paper strip: Separation, preconcentration, and subattomolar detection. Anal. Chem. 2013, 85, 3977–3983.

    Article  CAS  Google Scholar 

  171. Yu, W. W.; White, I. M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 2012, 137, 1168–1173.

    Article  CAS  Google Scholar 

  172. Shi, Y.-E.; Li, L. M.; Yang, M.; Jiang, X. H.; Zhao, Q. Q.; Zhan, J. H. A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst 2014, 139, 2525–2530.

    Article  CAS  Google Scholar 

  173. Prikhozhdenko, E. S.; Lengert, E. V.; Parakhonskiy, B. V.; Gorin, D. A.; Sukhorukov, G. B.; Yashchenok, A. M. Biocompatible chitosan nanofibers functionalized with silver nanoparticles for SERS based detection. Acta Phys. Pol. A 2016, 129, 247–249.

    Article  CAS  Google Scholar 

  174. Prikhozhdenko, E. S.; Atkin, V. S.; Parakhonskiy, B. V.; Rybkin, I. A.; Lapanje, A.; Sukhorukov, G. B.; Gorin, D. A.; Yashchenok, A. M. New post-processing method of preparing nanofibrous SERS substrates with a high density of silver nanoparticles. RSC Adv. 2016, 6, 84505–84511.

    Article  CAS  Google Scholar 

  175. Gao, W. R.; Chen, G.; Xu, W. Q.; Yang, C. G.; Xu, S. P. Surface-enhanced Raman scattering (SERS) chips made from metal nanoparticle-doped polymer fibers. RSC Adv. 2014, 4, 23838–23845.

    Article  CAS  Google Scholar 

  176. Shao, J. D.; Tong, L. P.; Tang, S. Y.; Guo, Z. N.; Zhang, H.; Li, P. H.; Wang, H. Y.; Du, C.; Yu, X. F. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl. Mater. Interfaces 2015, 7, 5391–5399.

    Article  CAS  Google Scholar 

  177. Jalaja, K.; Bhuvaneswari, S.; Ganiga, M.; Divyamol, R.; Anup, S.; Cyriac, J.; George, B. K. Effective SERS detection using a flexible wiping substrate based on electrospun polystyrene nanofibers. Anal. Methods 2017, 9, 3998–4003.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Government of the Russian Federation (No. 14.Z50.31.0004) to support scientific research projects implemented under the supervision of leading scientists at Russian institutions). Ekaterina S. Prikhozhdenko acknowledges Deutscher Akademischer Austauschdienst (DAAD project no. 15.9970.2017/5.2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ekaterina S. Prikhozhdenko or Alexey M. Yashchenok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prikhozhdenko, E.S., Bratashov, D.N., Gorin, D.A. et al. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 11, 4468–4488 (2018). https://doi.org/10.1007/s12274-018-2064-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2064-2

Keywords

Navigation