Skip to main content
Log in

Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 06 April 2019

This article has been updated

Abstract

Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the electron configuration of the atoms of the underlying surface is well-understood, the effect of substrate geometry still remains unclear. The structural properties of h-BN monolayers grown on a rectangularly packed Rh(110) surface were characterized in situ by ultrahigh vacuum scanning tunneling microscopy and were compared to those that this material exhibits when grown on substrates showing different crystallographic orientations. Although the h-BN monolayer grown on Rh(110) was dominated by a unique quasiunidimensional moiré pattern, suggesting considerable interface interaction, the moiré corrugation was unexpectedly smaller than those reported for strongly interacting interfaces with hexagonal-terminated substrates, owing to differences in the possible binding landscapes at interfaces with differently oriented substrates. Moreover, a rule was derived for predicting how interface corrugation and the existence and extent of subregions within moiré supercells containing favorable sites for orbital mixing between h-BN monolayers and their supports depend on substrate symmetry. These general symmetry considerations can be applied to numerous 2D materials, including graphene, thereby enabling the prediction of how substrate choice determines the properties of these materials. Furthermore, they could also provide new routes for tuning 2D material properties and for developing nanotemplates showing different geometries for growing adsorbate superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 06 April 2019

    The writings of the text on the last line, left column on the 4<Superscript>th</Superscript> page and the text on lines 8<Superscript>th</Superscript>, 10<Superscript>th</Superscript>, 11<Superscript>th</Superscript> and 16<Superscript>th</Superscript> in the 4<Superscript>th</Superscript> paragraph, left column and on lines from 1st to 8<Superscript>th</Superscript> in the 1st paragraph, right column on the 5<Superscript>th</Superscript> page, and the text on line 4<Superscript>th</Superscript> in the 1<Superscript>st</Superscript> paragraph, left column on the 9<Superscript>th</Superscript> page, and Figure 3 and its caption on the 5<Superscript>th</Superscript> page in the original version of this article were unfortunately incorrect.

References

  1. Oshima, C.; Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condes. Matter 1997, 9, 1.

    Google Scholar 

  2. Laskowski, R.; Blaha, P.; Schwarz, K. Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study. Phys. Rev. B 2008, 78, 045409.

    Article  Google Scholar 

  3. Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.

    Article  Google Scholar 

  4. Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

    Article  Google Scholar 

  5. Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.

    Article  Google Scholar 

  6. Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 075429.

    Article  Google Scholar 

  7. de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, M. C. G.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 2008, 100, 056807.

    Article  Google Scholar 

  8. Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

    Article  Google Scholar 

  9. Grüneis, A.; Vyalikh, D. V. Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 2008, 77, 193401.

    Article  Google Scholar 

  10. Pletikosic, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.

    Article  Google Scholar 

  11. Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

    Article  Google Scholar 

  12. Voloshina, E. N.; Dedkov, Y. S.; Torbrügge, S.; Thissen, A.; Fonin, M. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 2012, 100, 241606.

    Article  Google Scholar 

  13. Rusponi, S.; Papagno, M.; Moras, P.; Vlaic, S.; Etzkorn, M.; Sheverdyaeva, P. M.; Pacile, D.; Brune, H.; Carbone, C. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice. Phys. Rev. Lett. 2010, 105, 246803.

    Article  Google Scholar 

  14. Martín-Recio, A.; Romero-Muñiz, C.; Martínez Galera, A. J.; Pou, P.; Pérez, R.; Gómez-Rodríguez, J. M. Tug-of-war between corrugation and binding energy: Revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system. Nanoscale 2015, 7, 11300–11309.

    Article  Google Scholar 

  15. González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Enrique Ortega, J.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131–5144.

    Article  Google Scholar 

  16. Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic-structure of monolayer hexagonal boron-nitride physisorbed on metal surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.

    Article  Google Scholar 

  17. Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    Article  Google Scholar 

  18. Preobrajenski, A. B.; Vinogradov, A. S.; Mårtensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states. Surf. Sci. 2005, 582, 21–30.

    Article  Google Scholar 

  19. Preobrajenski, A. B.; Vinogradov, A. S.; Ng, M. L.; Cavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N. Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys. Rev. B 2007, 75, 245412.

    Article  Google Scholar 

  20. Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 2007, 446, 119–123.

    Article  Google Scholar 

  21. Brugger, T.; Günther, S.; Wang, B.; Dil, J. H.; Bocquet, M. L.; Osterwalder, J.; Wintterlin, J.; Greber, T. Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001). Phys. Rev. B 2009, 79, 045407.

    Article  Google Scholar 

  22. Doll, G. L.; Speck, J. S.; Dresselhaus, G.; Dresselhaus, M. S.; Nakamura, K.; Tanuma, S. I. Intercalation of hexagonal boron nitride with potassium. J. Appl. Phys. 1989, 66, 2554–2558.

    Article  Google Scholar 

  23. Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V. Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Phys. Rev. B 2010, 82, 075415.

    Article  Google Scholar 

  24. Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem., Int. Ed. 2010, 49, 6120–6124.

    Article  Google Scholar 

  25. Larciprete, R.; Ulstrup, S.; Lacovig, P.; Dalmiglio, M.; Bianchi, M.; Mazzola, F.; Hornekaer, L.; Orlando, F.; Baraldi, A.; Hofmann, P. et al. Oxygen switching of the epitaxial graphene- metal interaction. ACS Nano 2012, 6, 9551–9558.

    Article  Google Scholar 

  26. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

    Article  Google Scholar 

  27. Petrovic, M.; Rakic, I. Š.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazic, P.; Pletikosic, I.; Pan, Z. H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.

    Article  Google Scholar 

  28. Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by Co intercalation. ChemPhysChem 2015, 16, 923–927.

    Article  Google Scholar 

  29. Schröder, U. A.; Grånäs, E.; Gerber, T.; Arman, M. A.; Martínez-Galera, A. J.; Schulte, K.; Andersen, J. N.; Knudsen, J.; Michely, T. Etching of graphene on Ir(111) with molecular oxygen. Carbon 2016, 96, 320–331.

    Article  Google Scholar 

  30. Martínez-Galera, A. J.; Schröder, U. A.; Huttmann, F.; Jolie, W.; Craes, F.; Busse, C.; Caciuc, V.; Atodiresei, N.; Blügel, S.; Michely, T. Oxygen orders differently under graphene: New superstructures on Ir(111). Nanoscale 2016, 8, 1932–1943.

    Article  Google Scholar 

  31. Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742–6765.

    Article  Google Scholar 

  32. Schröder, U. A.; Petrovic, M.; Gerber, T.; Martínez-Galera, A. J.; Grånäs, E.; Arman, M. A.; Herbig, C.; Schnadt, J.; Kralj, M.; Knudsen, J. et al. Core level shifts of intercalated graphene. 2D Mater. 2017, 4, 015013.

    Article  Google Scholar 

  33. Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) Surface. Phys. Rev. Lett. 2007, 98, 106802.

    Article  Google Scholar 

  34. Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

    Article  Google Scholar 

  35. Gotterbarm, K.; Zhao, W.; Höfert, O.; Gleichweit, C.; Papp, C.; Steinrück, H. P. Growth and oxidation of graphene on Rh(111). Phys. Chem. Chem. Phys. 2013, 15, 19625–19631.

    Article  Google Scholar 

  36. Orlando, F.; Larciprete, R.; Lacovig, P.; Boscarato, I.; Baraldi, A.; Lizzit, S. Epitaxial growth of hexagonal boron nitride on Ir(111). J. Phys. Chem. C 2012, 116, 157–164.

    Article  Google Scholar 

  37. N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

    Article  Google Scholar 

  38. Brihuega, I.; Michaelis, C. H.; Zhang, J.; Bose, S.; Sessi, V.; Honolka, J.; Schneider, M. A.; Enders, A.; Kern, K. Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf. Sci. 2008, 602, L95–L99.

    Article  Google Scholar 

  39. N’Diaye, A. T.; Gerber, T.; Busse, C.; Myslivecek, J.; Coraux, J.; Michely, T. A versatile fabrication method for cluster superlattices. New J. Phys. 2009, 11, 103045.

    Article  Google Scholar 

  40. Donner, K.; Jakob, P. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moiré overlayer. J. Chem. Phys. 2009, 131, 164701.

    Article  Google Scholar 

  41. Cavallin, A.; Pozzo, M.; Africh, C.; Baraldi, A.; Vesselli, E.; Dri, C.; Comelli, G.; Larciprete, R.; Lacovig, P.; Lizzit, S. et al. Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS Nano 2012, 6, 3034–3043.

    Article  Google Scholar 

  42. Martínez-Galera, A. J.; Brihuega, I.; Gutiérrez-Rubio, A.; Stauber, T.; Gómez-Rodríguez, J. M. Towards scalable nano- engineering of graphene. Sci. Rep. 2014, 4, 7314.

    Article  Google Scholar 

  43. Martínez-Galera, A. J.; Brihuega, I.; Gómez-Rodríguez, J. M. Influence of the rotational domain in the growth of transition metal clusters on graphene. J. Phys. Chem. C 2015, 119, 3572–3578.

    Article  Google Scholar 

  44. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  45. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

    Article  Google Scholar 

  46. Hui, F.; Pan, C. B.; Shi, Y. Y.; Ji, Y. F.; Grustan-Gutierrez, E.; Lanza, M. On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 2016, 163, 119–133.

    Article  Google Scholar 

  47. Ji, Y. F.; Pan, C. B.; Zhang, M. Y.; Long, S. B.; Lian, X. J.; Miao, F.; Hui, F.; Shi, Y. Y.; Larcher, L.; Wu, E. et al. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Appl. Phys. Lett. 2016, 108, 012905.

    Article  Google Scholar 

  48. Jiang, L. L.; Shi, Y. Y.; Hui, F.; Tang, K. C.; Wu, Q.; Pan, C. B.; Jing, X.; Uppal, H.; Palumbo, F.; Lu, G. Y. et al. Dielectric breakdown in chemical vapor deposited hexagonal boron nitride. ACS Appl. Mater. Interfaces 2017, 9, 39758–39770.

    Article  Google Scholar 

  49. Custance, O.; Brochard, S.; Brihuega, I.; Artacho, E.; Soler, J. M.; Baró, A. M.; Gómez-Rodríguez, J. M. Single adatom adsorption and diffusion on Si(111)-(7×7) surfaces: Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 2003, 67, 235410.

    Article  Google Scholar 

  50. Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Nucleation and growth of the prototype azabenzene 1,3,5-triazine on graphite surfaces at low temperatures. J. Phys. Chem. C 2011, 115, 11089–11094.

    Article  Google Scholar 

  51. Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  Google Scholar 

  52. Murray, P. W.; Leibsle, F. M.; Li, Y.; Guo, Q.; Bowker, M.; Thornton, G.; Dhanak, V. R.; Prince, K. C.; Rosei, R. Scanning- tunneling-microscopy study of the oxygen-induced reconstruction of Rh(110). Phys. Rev. B 1993, 47, 12976–12979.

    Article  Google Scholar 

  53. Murray, P. W.; Leibsle, F. M.; Thornton, G.; Bowker, M.; Dhanak, V. R.; Baraldi, A.; Kiskinova, M.; Rosei, R. Nitrogen-induced reconstruction on Rh(110): Effect of oxygen on the growth and ordering of Rh-N chains. Surf. Sci. 1994, 304, 48–58.

    Article  Google Scholar 

  54. Africh, C.; Esch, F.; Comelli, G.; Rosei, R. Dynamics of the O induced reconstruction of the Rh(110) surface: A scanning tunnelling microscopy study. J. Chem. Phys. 2001, 115, 477–481.

    Article  Google Scholar 

  55. Günther, S.; Hoyer, R.; Marbach, H.; Imbihl, R.; Esch, F.; Africh, C.; Comelli, G.; Kiskinova, M. K and mixed K+O adlayers on Rh(110). J. Chem. Phys. 2006, 124, 014706.

    Article  Google Scholar 

  56. Nguyen, L.; Liu, L. C.; Assefa, S.; Wolverton, C.; Schneider, W. F.; Tao, F. F. Atomic-scale structural evolution of Rh(110) during catalysis. ACS Catal. 2017, 7, 664–674.

    Article  Google Scholar 

  57. Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804–5810.

    Article  Google Scholar 

  58. N’Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10, 043033.

    Article  Google Scholar 

  59. Chagas, T.; Cunha, T. H. R.; Matos, M. J. S.; dos Reis, D. D.; Araujo, K. A. S.; Malachias, A.; Mazzoni, M. S. C.; Ferlauto, A. S.; Magalhaes-Paniago, R. Room temperature observation of the correlation between atomic and electronic structure of graphene on Cu(110). RSC Adv. 2016, 6, 98001–98009.

    Article  Google Scholar 

  60. Corso, M.; Greber, T.; Osterwalder, J. h-BN on Pd(110): A tunable system for self-assembled nanostructures? Surf. Sci. 2005, 577, L78–L84.

    Google Scholar 

  61. Vinogradov, N. A.; Zakharov, A. A.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Martensson, N.; Preobrajenski, A. B. One-dimensional corrugation of the h-BN monolayer on Fe(110). Langmuir 2012, 28, 1775–1781.

    Article  Google Scholar 

  62. Allan, M. P.; Berner, S.; Corso, M.; Greber, T.; Osterwalder, J. Tunable self-assembly of one-dimensional nanostructures with orthogonal directions. Nanoscale Res. Lett. 2007, 2, 94–99.

    Article  Google Scholar 

  63. Müller, F.; Hüfner, S.; Sachdev, H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine. Surf. Sci. 2008, 602, 3467–3476.

    Article  Google Scholar 

  64. Vinogradov, N. A.; Zakharov, A. A.; Kocevski, V.; Rusz, J.; Simonov, K. A.; Eriksson, O.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Mårtensson, N. et al. Formation and structure of graphene waves on Fe(110). Phys. Rev. Lett. 2012, 109, 026101.

    Article  Google Scholar 

  65. Müller, F.; Grandthyll, S. Monolayer formation of hexagonal boron nitride on Ag(001). Surf. Sci. 2013, 617, 207–210.

    Article  Google Scholar 

  66. Grandthyll, S.; Jacobs, K.; Müller, F. Liquid-source growth of graphene on Ag(001). Phys. Status Solidi B-Basic Solid State Phys. 2015, 252, 1695–1699.

    Article  Google Scholar 

  67. Rasool, H. I.; Song, E. B.; Mecklenburg, M.; Regan, B. C.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 2011, 133, 12536–12543.

    Article  Google Scholar 

  68. Locatelli, A.; Wang, C.; Africh, C.; Stojic, N.; Mentes, T. O.; Comelli, G.; Binggeli, N. Temperature-driven reversible rippling and bonding of a graphene superlattice. ACS Nano 2013, 7, 6955–6963.

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge financial support from AEI and FEDER under project MAT2016-77852-C2-2-R (AEI/FEDER, UE). A.J.M.-G. acknowledges funding from the Spanish MINECO through the Juan de la Cierva program (ref. IJCI-2014-19209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Martínez-Galera.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Galera, A.J., Gómez-Rodríguez, J.M. Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers. Nano Res. 11, 4643–4653 (2018). https://doi.org/10.1007/s12274-018-2045-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2045-5

Keywords

Navigation