Skip to main content
Log in

Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible, wearable, and even stretchable sensors are the key components of smart electronic textiles. However, most reported flexible and wearable sensors for wearable electronics are usually fabricated in two-dimensional (2D) planar strip configurations, which cannot be properly integrated into textile structures and thus greatly degrade intrinsic properties such as the softness, flexibility, and air permeability of textiles and the aesthetic feeling of clothing. In this work, a new one-dimensional weavable strain sensing yarn consisting of an elastic polyurethane (PU) core, a conductive Ag-nanoparticles/graphene-microsheets composite sheath, and a silicone encapsulation layer was designed and fabricated through an easily manipulated protocol. Arising from the reasonable structural design and appropriate material selection, the as-fabricated strain sensor not only exhibited excellent flexibility, stretchability, and highly repeatable electromechanical stability (a repeatability error of 1.56%) but also possessed both high sensitivity (a gauge factor of nearly 500) and a relatively wide working range (0–50% applied strain) with good linearity (a correlation coefficient of 0.98). In addition, the facile, nearly all-solution-based fabrication protocol enabled the scalable production of long conductive yarns. Thus, the proper yarn length and superb mechanical properties endowed the stretchable conductive yarn with good weavability. The excellent wearability of the stretchable conductive yarn was derived from the outermost isolating, hydrophobic, and biocompatible silicone encapsulation layer. A wearable high-sensitivity strain sensing textile, fabricated by directly weaving the as-prepared yarn-based sensor, showed great potential for application to wearable textile sensors for real-time monitoring of human motions from vigorous walking to subtle and complex pronunciations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, W.; Chen, P. N.; He, S. S.; Sun, X. M.; Peng, H. S. Smart electronic textiles. Angew. Chem., Int. Ed. 2016, 55, 6140–6169.

    Article  Google Scholar 

  2. Yetisen, A. K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M. R.; Hinestroza, J. P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S. K. Nanotechnology in textiles. ACS Nano 2016, 10, 3042–3068.

    Article  Google Scholar 

  3. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

    Article  Google Scholar 

  4. Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

    Article  Google Scholar 

  5. Huang, Q. Y.; Wang, D. R.; Zheng, Z. J. Textile-based electrochemical energy storage devices. Adv. Energy Mater. 2016, 6, 1600783.

    Article  Google Scholar 

  6. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    Article  Google Scholar 

  7. Yang, Y.; Huang, Q. Y.; Niu, L. Y.; Wang, D. R.; Yan, C.; She, Y. Y.; Zheng, Z. J. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.

    Article  Google Scholar 

  8. Hu, B.; Li, D. P.; Ala, O.; Manandhar, P.; Fan, Q. G.; Kasilingam, D.; Calvert, P. D. Textile-based flexible electroluminescent devices. Adv. Funct. Mater. 2011, 21, 305–311.

    Article  Google Scholar 

  9. Kim, W.; Kwon, S.; Han, Y. C.; Kim, E.; Choi, K. C.; Kang, S. H.; Park, B. C. Reliable actual fabric-based organic lightemitting diodes: Toward a wearable display. Adv. Electron. Mater. 2016, 2, 1600220.

    Article  Google Scholar 

  10. Zhang, Z. T.; Guo, K. P.; Li, Y. M.; Li, X. Y.; Guan, G. Z.; Li, H. P.; Luo, Y. F.; Zhao, F. Y.; Zhang, Q.; Wei, B. et al. A colour-tunable, weavable fibre-shaped polymer light emitting electrochemical cell. Nat. Photonics 2015, 9, 233–238.

    Article  Google Scholar 

  11. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H.-H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  Google Scholar 

  12. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.-K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  Google Scholar 

  13. Pang, C. H.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  Google Scholar 

  14. Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D. M.; Haufe, F.; Wood, R. J.; Walsh, C. J. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking. Adv. Mater. Technol. 2017, 2, 1700136.

    Article  Google Scholar 

  15. Wang, H. Y.; Liu, Z. F.; Ding, J. N.; Lepró, X.; Fang, S. L.; Jiang, N.; Yuan, N. Y.; Wang, R.; Yin, Q.; Lv, W. et al. Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 2016, 28, 4998–5007.

    Article  Google Scholar 

  16. Li, R. Y.; Si, Y.; Zhu, Z. J.; Guo, Y. J.; Zhang, Y. J.; Pan, N.; Sun, G.; Pan, T. R. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 2017, 29, 1700253.

    Article  Google Scholar 

  17. Zeng, W.; Tao, X. M.; Chen, S.; Shang, S. M.; Chan, H. L. W.; Choy, S. H. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 2013, 6, 2631–2638.

    Article  Google Scholar 

  18. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi- Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  Google Scholar 

  19. Huang, Y.; Kershaw, S. V.; Wang, Z. T.; Pei, Z. X.; Liu, J. Y.; Huang, Y.; Li, H. F.; Zhu, M. S.; Rogach, A. L.; Zhi, C. Y. Highly integrated supercapacitor-sensor systems via material and geometry design. Small 2016, 12, 3393–3399.

    Article  Google Scholar 

  20. Wang, Z. F.; Jiang, R. J.; Li, G. M.; Chen, Y. Y.; Tang, Z. J.; Wang, Y. K.; Liu, Z. X.; Jiang, H. B.; Zhi, C. Y. Flexible dual-mode tactile sensor derived from three-dimensional porous carbon architecture. ACS Appl. Mater. Interfaces 2017, 9, 22685–22693.

    Article  Google Scholar 

  21. Coyle, S.; Wu, Y. Z.; Lau, K. T.; De Rossi, D.; Wallace, G.; Diamond, D. Smart nanotextiles: A review of materials and applications. MRS Bull. 2007, 32, 434–442.

    Article  Google Scholar 

  22. Shu, L.; Hua, T.; Wang, Y. Y.; Li, Q. A.; Feng, D. D.; Tao, X. M. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767–775.

    Article  Google Scholar 

  23. Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. Paper-based electrical respiration sensor. Angew. Chem., Int. Ed. 2016, 55, 5727–5732.

    Article  Google Scholar 

  24. Takamatsu, S.; Lonjaret, T.; Crisp, D.; Badier, J. M.; Malliaras, G. G.; Ismailova, E. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 2015, 5, 15003.

    Article  Google Scholar 

  25. Wu, X. D.; Han, Y. Y.; Zhang, X. X.; Lu, C. H. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 2016, 8, 9936–9945.

    Article  Google Scholar 

  26. Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Le, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.

    Article  Google Scholar 

  27. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silkmolded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    Article  Google Scholar 

  28. Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Largearea all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

    Article  Google Scholar 

  29. Ajovalasit, A.; Zuccarello, B. Local Reinforcement Effect of a strain gauge installation on low modulus materials. J. Strain Anal. Eng. Des. 2005, 40, 643–653.

    Article  Google Scholar 

  30. Barlian, A. A.; Park, W. T.; Mallon, J. R.; Rastegar, A. J.; Pruitt, B. L. Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 2009, 97, 513–552.

    Article  Google Scholar 

  31. Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992.

    Article  Google Scholar 

  32. Gong, S.; Lai, D. T. H.; Su, B.; Si, K. J.; Ma, Z.; Yap, L. W.; Guo, P. Z.; Cheng, W. L. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 2015, 1, 1400063.

    Article  Google Scholar 

  33. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    Article  Google Scholar 

  34. Frutiger, A.; Muth, J. T.; Vogt, D. M.; Mengüç, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A. Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 2015, 27, 2440–2446.

    Article  Google Scholar 

  35. Castano, L. M.; Flatau, A. B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001.

    Article  Google Scholar 

  36. Wang, F.; Zhu, B.; Shu, L.; Tao, X. M. Flexible pressure sensors for smart protective clothing against impact loading. Smart Mater. Struct. 2014, 23, 015001.

    Article  Google Scholar 

  37. Chu, B. B.; Song, B.; Ji, X. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular pH in live cells. Anal. Chem. 2017, 89, 12152–12159.

    Article  Google Scholar 

  38. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    Article  Google Scholar 

  39. Wang, Z. F.; Huang, Y.; Sun, J. F.; Huang, Y.; Hu, H.; Jiang, R. J.; Gai, W. M.; Li, G. M.; Zhi, C. Y. Polyurethane/cotton/ carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843.

    Article  Google Scholar 

  40. Du, D. H.; Li, P. C.; Ouyang, J. Y. Graphene coated nonwoven fabrics as wearable sensors. J. Mater. Chem. C 2016, 4, 3224–3230.

    Article  Google Scholar 

  41. Zhang, R.; Deng, H.; Valenca, R.; Jin, J. H.; Fu, Q.; Bilotti, E.; Peijs, T. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensor. Actuat. A 2012, 179, 83–91.

    Article  Google Scholar 

  42. Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.

    Article  Google Scholar 

  43. Shang, Y. Y.; Li, Y. B.; He, X. D.; Du, S. Y.; Zhang, L. H.; Shi, E. Z.; Wu, S. T.; Li, Z.; Li, P. X.; Wei, J. Q. et al. Highly twisted double-helix carbon nanotube yarns. ACS Nano 2013, 7, 1446–1453.

    Article  Google Scholar 

  44. Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for highperformance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

    Article  Google Scholar 

  45. Su, C. I.; Maa, M. C.; Yang, H. Y. Structure and performance of elastic core-spun yarn. Text. Res. J. 2004, 74, 607–610.

    Article  Google Scholar 

  46. Bhowmick, A. K.; Stephens, H. L. Polynorbornene rubber. In Handbook of Elastomers; Marcel Dekker Inc.: New York, 2001.

    Google Scholar 

  47. Serizawa, T.; Kamimura, S.; Kawanishi, N.; Akashi, M. Layerby- layer assembly of poly(vinyl alcohol) and hydrophobic polymers based on their physical adsorption on surfaces. Langmuir 2002, 18, 8381–8385.

    Article  Google Scholar 

  48. Jayaraman, K.; Hsu, S. L.; McCarthy, T. J. Versatile multilayer thin film preparation using hydrophobic interactions, crystallization, and chemical modification of poly(vinyl alcohol). Langmuir 2007, 23, 3260–3264.

    Article  Google Scholar 

  49. Lee, H.; Mensire, R.; Cohen, R. E.; Rubner, M. F. Strategies for hydrogen bonding based layer-by-layer assembly of poly(vinyl alcohol) with weak polyacids. Macromolecules 2012, 45, 347–355.

    Article  Google Scholar 

  50. Ceratti, D. R.; Louis, B.; Paquez, X.; Faustini, M.; Grosso, D. A new dip coating method to obtain large-surface coatings with a minimum of solution. Adv. Mater. 2015, 27, 4958–4962.

    Article  Google Scholar 

  51. Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

    Article  Google Scholar 

  52. Park, J. W.; Jang, J. Fabrication of graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon 2015, 87, 275–281.

    Article  Google Scholar 

  53. Tian, H.; Shu, Y.; Cui, Y. L.; Mi, M. T.; Yang, Y.; Xie, D.; Ren, T.-L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699–705.

    Article  Google Scholar 

  54. Balima, F.; Le Floch, S.; Adessi, C.; Cerqueira, T. F. T.; Blanchard, N.; Arenal, R.; Brûlet, A.; Marques, M. A. L.; Botti, S.; San-Miguel, A. Radial collapse of carbon nanotubes for conductivity optimized polymer composites. Carbon 2016, 106, 64–73.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Research Grant Council of Hong Kong (Project PolyU 252024/16E).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Hu or Tao Hua.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, H., Hua, T. et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 11, 5799–5811 (2018). https://doi.org/10.1007/s12274-018-2043-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2043-7

Keywords

Navigation