Skip to main content
Log in

1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Few-layered MoSe2 nanosheets with mixed 1T/2H phase were successfully arrayed on a Ti substrate (forming 1T@2H-MoSe2/Ti) through a facile one-step solvothermal process. After testing different synthesis conditions, it was found that the optimal process involves a temperature of 200 °C and a reaction time of 12 h. Structural characterizations reveal that the morphology of 1T@2H-MoSe2 consists of edge-terminated nanosheets with one to five layers, composed of a mixed 1T/2H phase dominated by the 1T one. The 1T@2H-MoSe2/Ti electrode shows excellent HER catalytic activity, with a small onset potential (−120 mV vs. reversible hydrogen electrode, RHE) and an electrode potential of only −133 mV (vs. RHE) to achieve a current density of 20 mA·cm−2. This excellent electrocatalytic activity is due to the synergistic effects of 1T metallic phase, few-layered nanosheet morphology, and direct growth of 1T@2H-MoSe2on the Ti substrate. In addition, the 1T@2H-MoSe2/Ti electrode shows excellent stability towards long-term electrolysis. This is due to the long-term stability of the valence states of Mo and Se, as shown by post-electrolysis X-ray photoelectron spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  2. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  3. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  4. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  5. Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.

    Article  Google Scholar 

  6. Li, H.; Tan, Y. W.; Liu, P.; Guo, C. G.; Luo, M.; Han, J. H.; Lin, T. Q.; Huang, F. Q.; Chen, M. W. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 2016, 28, 8945–8949.

    Article  Google Scholar 

  7. Du, N.; Wang, C. M.; Wang, X. J.; Lin, Y.; Jiang, J.; Xiong, Y. J. Trimetallic TriStar nanostructures: Tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2016, 28, 2077–2084.

    Article  Google Scholar 

  8. Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

    Article  Google Scholar 

  9. Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    Article  Google Scholar 

  10. Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

    Article  Google Scholar 

  11. Ivanovskaya, A.; Singh, N.; Liu, R. F.; Kreutzer, H.; Baltrusaitis, J.; Van Nguyen, T.; Metiu, H.; McFarland, E. Transition metal sulfide hydrogen evolution catalysts for hydrobromic acid electrolysis. Langmuir 2013, 29, 480–492.

    Article  Google Scholar 

  12. Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

    Article  Google Scholar 

  13. Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671–2681.

    Article  Google Scholar 

  14. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  15. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  Google Scholar 

  16. Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

    Article  Google Scholar 

  17. Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.

    Article  Google Scholar 

  18. Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K. V.; Greenblatt, M.; Dismukes, G. C. Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 2015, 8, 1027–1034.

    Article  Google Scholar 

  19. Wang, X. G.; Kolen’ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2015, 54, 8188–8192.

    Article  Google Scholar 

  20. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  21. Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

    Article  Google Scholar 

  22. Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092.

    Article  Google Scholar 

  23. Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198.

    Article  Google Scholar 

  24. Chia, X. Y.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 2015, 9, 5164–5179.

    Article  Google Scholar 

  25. Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; Baricuatro, J. H.; McCrory, C. C. L.; Soriaga, M. P.; Lewis, N. S. Operando synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction. ACS Catal. 2014, 4, 2866–2873.

    Article  Google Scholar 

  26. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  27. Ambrosi, A.; Sofer, Z.; Pumera, M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51, 8450–8453.

    Article  Google Scholar 

  28. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  29. Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.

    Article  Google Scholar 

  30. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Yao, Z. J.; Yang, F.; Lin, S. W.; Wang, X. L.; Lu, X. H.; Xia, X. H. et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/ graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1700748.

    Article  Google Scholar 

  31. Huang, Y. P.; Lu, H. Y.; Gu, H. H.; Fu, J.; Mo, S. Y.; Wei, C.; Miao, Y. E.; Liu, T. X. A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 2015, 7, 18595–18602.

    Article  Google Scholar 

  32. Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

    Article  Google Scholar 

  33. Shi, W. W.; Wang, Z. G.; Fu, Y. Q. Rhenium doping induced structural transformation in mono-layered MoS2 with improved catalytic activity for hydrogen evolution reaction. J. Phys. D: Appl. Phys. 2017, 50, 405303.

    Article  Google Scholar 

  34. Shi, W. W.; Wang, Z. G.; Fu, Y. Q. Mechanical bending induced catalytic activity enhancement of monolayer 1T’-MoS2 for hydrogen evolution reaction. J. Nanopart. Res. 2017, 19, 296.

    Article  Google Scholar 

  35. Jiang, M.; Zhang, J. J.; Wu, M. H.; Jian, W. J.; Xue, H. T.; Ng, T. W.; Lee, C. S.; Xu, J. Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 14949–14953.

    Article  Google Scholar 

  36. Zhang, J. Y.; Wang, T. T.; Liu, P. T.; Liu, Y. G.; Ma, J.; Gao, D. Q. Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim. Acta 2016, 217, 181–186.

    Article  Google Scholar 

  37. Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

    Article  Google Scholar 

  38. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    Article  Google Scholar 

  39. Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Huang, Y.; Liu, K. L.; Cheng, Z. Z.; Jiang, C.; He, J. Recent advances in transition- metal dichalcogenide based nanomaterials for water splitting. Nanoscale 2015, 7, 19764–19788.

    Article  Google Scholar 

  40. Jamesh, M. I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 2016, 333, 213–236.

    Article  Google Scholar 

  41. Xu, X. Y.; Zhou, G.; Dong, X. F.; Hu, J. G. Interface band engineering charge transfer for 3D MoS2 photoanode to boost photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2017, 5, 3829–3836.

    Article  Google Scholar 

  42. Wang, H.; Min, S. X.; Wang, Q.; Li, D. B.; Casillas, G.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Li, L. J.; Yuan, J. Y. et al. Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 2017, 11, 4358–4364.

    Article  Google Scholar 

  43. Xiong, D. H.; Li, W.; Liu, L. F. Vertically aligned porous nickel(II) hydroxide nanosheets supported on carbon paper with long-term oxygen evolution performance. Chem.—Asian J. 2017, 12, 543–551.

    Article  Google Scholar 

  44. Zhou, Y.; Xiao, H. Q.; Zhang, S.; Li, Y. P.; Wang, S. T.; Wang, Z. J.; An, C. H.; Zhang, J. Interlayer expanded lamellar CoSe2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochim. Acta 2017, 241, 106–115.

    Article  Google Scholar 

  45. Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt- sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.

    Article  Google Scholar 

  46. Wang, K.; Ye, Z. G.; Liu, C. Q.; Xi, D.; Zhou, C. J.; Shi, Z. Q.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Morphology-controllable synthesis of cobalt telluride branched nanostructures on carbon fiber paper as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 2910–2916.

    Article  Google Scholar 

  47. Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.

    Article  Google Scholar 

  48. Zhang, Z.; Liu, Y. D.; Ren, L.; Zhang, H.; Huang, Z. Y.; Qi, X.; Wei, X. L.; Zhong, J. X. Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution. Electrochim. Acta 2016, 200, 142–151.

    Article  Google Scholar 

  49. Chen, X. S.; Liu, G. B.; Zheng, W.; Feng, W.; Cao, W. W.; Hu, W. P.; Hu, P. A. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 8537–8544.

    Article  Google Scholar 

  50. Liu, Y. D.; Ren, L.; Zhang, Z.; Qi, X.; Li, H. X.; Zhong, J. X. 3D binder-free MoSe2 nanosheets/carbon cloth electrodes for efficient and stable hydrogen evolution prepared by simple electrophoresis deposition strategy. Sci. Rep. 2016, 6, 22516.

    Article  Google Scholar 

  51. Qu, B.; Yu, X. B.; Chen, Y. J.; Zhu, C. L.; Li, C. Y.; Yin, Z. X.; Zhang, X. T. Ultrathin MoSe2 nanosheets decorated on carbon fiber cloth as binder-free and high-performance electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 14170–14175.

    Article  Google Scholar 

  52. Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 2017, 29, 1606521.

    Article  Google Scholar 

  53. Amin, B. G.; Swesi, A. T.; Masud, J.; Nath, M. CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2017, 53, 5412–5415.

    Article  Google Scholar 

  54. Chen, X. J.; Zeng, G. F.; Gao, T. T.; Jin, Z. Y.; Zhang, Y. J.; Yuan, H. Y.; Xiao, D. In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation. Electrochem. Commun. 2017, 74, 42–47.

    Article  Google Scholar 

  55. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    Article  Google Scholar 

  56. Liu, X.; Zhang, J. Z.; Huang, K. J.; Hao, P. Net-like molybdenum selenide-acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chem. Eng. J. 2016, 302, 437–445.

    Article  Google Scholar 

  57. Amin, M. A.; Fadlallah, S. A.; Alosaimi, G. S. In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2014, 39, 19519–19540.

    Article  Google Scholar 

  58. Pu, Z. H.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 2014, 6, 11031–11034.

    Article  Google Scholar 

  59. Pu, Z. H.; Tang, C.; Luo, Y. L. Ferric phosphide nanoparticles film supported on titanium plate: A high-performance hydrogen evolution cathode in both acidic and neutral solutions. Int. J. Hydrogen Energy 2015, 40, 5092–5098.

    Article  Google Scholar 

  60. Shi, J. L.; Hu, J. M. Molybdenum sulfide nanosheet arrays supported on Ti plate: An efficient hydrogen-evolving cathode over the whole pH range. Electrochi. Acta 2015, 168, 256–260.

    Article  Google Scholar 

  61. Wang, L.; Zhang, X.; Ma, Y.; Yang, M.; Qi, Y. X. Supercapacitor performances of the MoS2/CoS2 nanotube arrays in situ grown on Ti plate. J. Phys. Chem. C 2017, 121, 9089–9095.

    Article  Google Scholar 

  62. Pu, Z. H.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. P. CoP nanosheet arrays supported on a Ti plate: An efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 2014, 26, 4326–4329.

    Article  Google Scholar 

  63. Lv, J. H.; Yang, M.; Liang, T. X.; Ken, S.; Hideo, M. The effect of reduced graphene oxide on MoS2 for the hydrogen evolution reaction in acidic solution. Chem. Phys. Lett. 2017, 678, 212–215.

    Article  Google Scholar 

  64. Xiao, H. Q.; Wang, S. T.; Wang, C.; Li, Y. Y.; Zhang, H. R.; Wang, Z. J.; Zhou, Y.; An, C. H.; Zhang, J. Lamellar structured CoSe2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochim. Acta 2016, 217, 156–162.

    Article  Google Scholar 

  65. Luo, Z. G.; Zhou, J.; Wang, L. R.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J. Mater. Chem. A 2016, 4, 15302–15308.

    Article  Google Scholar 

  66. Sun, X. L.; Wang, Z. G.; Li, Z. J.; Fu, Y. Q. Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 2016, 6, 26666.

    Article  Google Scholar 

  67. Wypych, F.; Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc., Chem. Commun. 1992, 1386–1388.

    Google Scholar 

  68. Zhao, W.; Ding, F. Energetics and kinetics of phase transition between a 2H and a 1T MoS2 monolayer—a theoretical study. Nanoscale 2017, 9, 2301–2309.

    Article  Google Scholar 

  69. Wu, Z. Z.; Tang, C. Y.; Zhou, P.; Liu, Z. H.; Xu, Y. S.; Wang, D. Z.; Fang, B. Z. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. J. Mater. Chem. A 2015, 3, 13050–13056.

    Article  Google Scholar 

  70. Gao, M. R.; Yao, W. T.; Yao, H. B.; Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 2009, 131, 7486–7487.

    Article  Google Scholar 

  71. Chen, R.; Yang, C. J.; Cai, W. Z.; Wang, H. Y.; Miao, J. W.; Zhang, L. P.; Chen, S. L.; Liu, B. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2017, 2, 1070–1075.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports provided by Fundamental Research Funds for the Central Universities (No. 16CX05016A), Shandong Provincial Natural Science Foundation, China (No. ZR2017QB015), and the National Natural Science Foundation of China (Nos. 51402362 and 21471160). J. Z. gratefully acknowledges the financial support from Taishan Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhou or Jun Zhang.

Electronic supplementary material

12274_2018_2040_MOESM1_ESM.pdf

1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, Y., Liu, M. et al. 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Res. 11, 4587–4598 (2018). https://doi.org/10.1007/s12274-018-2040-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2040-x

Keywords

Navigation