Skip to main content
Log in

Recent advances in controlled modification of the size and morphology of metal-organic frameworks

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advances in metal-organic frameworks (MOFs) resulted in significant contributions to diverse applications such as carbon capture, gas storage, heat transformation and separation along with emerging applications toward catalysis, medical imaging, drug delivery, and sensing. The unique in situ and ex situ structural features of MOFs can be tailored by conceptual selection of the organic (e.g., ligand) and inorganic (e.g., metal) components. Here, we provide a comprehensive review on the synthesis and characterization of MOFs, particularly with respect to controlling their size and morphology. A better understanding of the specific size and morphological parameters of MOFs will help initiate a new era for their real-world applications. Most importantly, this assessment will help develop novel synthesis methods for MOFs and their hybrid/porous materials counterparts with considerably improved properties in targeted applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn, J. M. Supramolecular chemistry—Scope and perspectives: Molecules—Supermolecules—Molecular devices. J. Incl. Phenom. 1988, 6, 351–396.

    Article  CAS  Google Scholar 

  2. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  3. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 2005, 38, 217–225.

    Article  CAS  Google Scholar 

  4. Tian, Y.-Q.; Zhao, Y. M.; Chen, Z. X.; Zhang, G. N.; Weng, L.-H.; Zhao, D.-Y. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): Synthesis and crystal structures of Zinc(II) imidazolate polymers with zeolitic topologies. Chem. —Eur. J. 2007, 13, 4146–4154.

    Article  CAS  Google Scholar 

  5. Sarma, D.; Ramanujachary, K. V.; Lofland, S. E.; Magdaleno, T.; Natarajan, S. Amino acid based MOFs: Synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales. Inorg. Chem. 2009, 48, 11660–11676.

    Article  CAS  Google Scholar 

  6. Ren, Y. W.; Liang, J. X.; Lu, J. X.; Cai, B. W.; Shi, D. B.; Qi, C. R.; Jiang, H. F.; Chen, J.; Zheng, D. 1,4-phenylenediacetatebased Ln MOFs—Synthesis, structures, luminescence, and catalytic activity. Eur. J. Inorg. Chem. 2011, 2011, 4369–4376.

    Article  CAS  Google Scholar 

  7. Luo, F.; Che, Y.-X.; Zheng, J.-M. Employing Cd-O-C rod-shaped secondary building units to construct 2D metalorganic frameworks (MOFs): Hydrothermal synthesis, structures, and luminescent properties. J. Coord. Chem. 2008, 61, 2097–2104.

    Article  CAS  Google Scholar 

  8. Plateroprats, A. E.; Bernini, M. C.; Medina, M. E.; Lopez-Torres, E.; Gutierrez-Puebla, E.; Monge, M. A.; Snejko, N. Three novel indium MOFs derived from diphenic acid: Synthesis, crystal structures and supramolecular chemistry. CrystEngComm 2011, 13, 4965–4972.

    Article  CAS  Google Scholar 

  9. Lee, J. Y.; Roberts, J. M.; Farha, O. K.; Sarjeant, A. A.; Scheidt, K. A.; Hupp, J. T. Synthesis and gas sorption properties of a metal-azolium framework (MAF) material. Inorg. Chem. 2009, 48, 9971–9973.

    Article  CAS  Google Scholar 

  10. Farha, O. K.; Hupp, J. T. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc. Chem. Res. 2010, 43, 1166–1175.

    Article  CAS  Google Scholar 

  11. Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O’Keeffe, M.; Yaghi, O. M. Assembly of metalorganic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.

    Article  CAS  Google Scholar 

  12. Wen, L.; Shi, W.; Chen, X. T.; Li, H. H.; Cheng, P. A Porous Metal-organic framework based on triazoledicarboxylate ligands—Synthesis, structure, and gas-sorption studies. Eur. J. Inorg. Chem. 2012, 2012, 3562–3568.

    Article  CAS  Google Scholar 

  13. Tan, C. R. Design and synthesis of reticular MOFs with high porosity and gas storage. Ph.D. Dissertation, University of Nottingham, Nottingham, 2013.

    Google Scholar 

  14. Wang, W. J.; Yuan, D. Q. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep. 2014, 4, 5711.

    Article  CAS  Google Scholar 

  15. Liu, S.; Sun, L. X.; Xu, F.; Zhang, J.; Jiao, C. L.; Li, F.; Li, Z. B.; Wang, S.; Wang, Z. Q.; Jiang, X. et al. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 2013, 6, 818–823.

    Article  CAS  Google Scholar 

  16. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129.

    Article  CAS  Google Scholar 

  17. Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177.

    Article  CAS  Google Scholar 

  18. Manju; Roy, P. K.; Ramanan, A.; Rajagopal, C. Core-shell polysiloxane-MOF 5 microspheres as a stationary phase for gas-solid chromatographic separation. RSC Adv. 2014, 4, 17429–17433.

    Article  Google Scholar 

  19. Maes, M.; Alaerts, L.; Vermoortele, F.; Ameloot, R.; Couck, S.; Finsy, V.; Denayer, J. F. M.; De Vos, D. E. Separation of C5-hydrocarbons on microporous materials: Complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 2010, 132, 2284–2292.

    Article  CAS  Google Scholar 

  20. Li, K. H.; Olson, D. H.; Lee, J. Y.; Bi, W. H.; Wu, K.; Yuen, T.; Xu, Q.; Li, J. Multifunctional microporous MOFs exhibiting gas/hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. Adv. Funct. Mater. 2008, 18, 2205–2214.

    Article  CAS  Google Scholar 

  21. Liu, Y. H.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures. Ind Eng. Chem. Res. 2010, 49, 2902–2906.

    Article  CAS  Google Scholar 

  22. Didas, S. A.; Choi, S.; Chaikittisilp, W.; Jones, C. W. Amineoxide hybrid materials for CO2 capture from ambient air. Acc. Chem. Res. 2015, 48, 2680–2687.

    Article  CAS  Google Scholar 

  23. Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84.

    Article  CAS  Google Scholar 

  24. Shekhah, O.; Belmabkhout, Y.; Chen, Z. J.; Guillerm, V.; Cairns, A.; Adil, K.; Eddaoudi, M. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun. 2014, 5, 4228.

    Article  CAS  Google Scholar 

  25. Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954.

    Article  CAS  Google Scholar 

  26. Li, B. Y.; Zhang, Y. M.; Ma, D. X.; Li, L.; Li, G. H.; Li, G. D.; Shi, Z.; Feng, S. H. A strategy toward constructing a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem. Commun. 2012, 48, 6151.

    Article  CAS  Google Scholar 

  27. Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem., Int. Ed. 2008, 47, 4144–4148.

    Article  CAS  Google Scholar 

  28. Luz, I.; Xamena, F. X. L. I.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: "Click" reactions with Cu-MOF catalysts. J. Catal. 2010, 276, 134–140.

    Article  CAS  Google Scholar 

  29. Luz, I.; Xamena, F. X. L. I.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal. 2012, 285, 285–291.

    Article  CAS  Google Scholar 

  30. Moon, S. Y; Liu, Y. Y; Hupp, J. T.; Farha, O. K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Angew. Chem., Int. Ed. 2015, 54, 6795–6799.

    Article  CAS  Google Scholar 

  31. Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 2014, 136, 15861–15864.

    Article  CAS  Google Scholar 

  32. Larous, S.; Meniai, A.-H. Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrogen Energy 2016, 41, 10380–10390.

    Article  CAS  Google Scholar 

  33. Li, L.; Sun, K. K.; Fan, L.; Ma, D.; Liu, L. Preparation and drug-delivery properties of hybrid materials MOFs/graphite oxide. Sci. Adv. Mater. 2016, 8, 1628–1633.

    Article  CAS  Google Scholar 

  34. Ibrahim, M.; Sabouni, R.; Husseini, G. A. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem. 2016, 24, 193–214.

    Article  CAS  Google Scholar 

  35. Chowdhuri, A. R.; Bhattacharya, D.; Sahu, S. K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton trans. 2016, 45, 2963–2973.

    Article  CAS  Google Scholar 

  36. Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem., Int. Ed. 2006, 45, 5974–5978.

    Article  CAS  Google Scholar 

  37. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.

    Article  CAS  Google Scholar 

  38. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

    Article  CAS  Google Scholar 

  39. Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Zhang, F.; Fan, S.; Zhao, H. J.; Schiestel, T.; Zhu, G. S. Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation. J. Mater. Chem. 2012, 22, 10322–10328.

    Article  CAS  Google Scholar 

  40. Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193–196.

    Article  CAS  Google Scholar 

  41. Liu, Y. L.; Gao, P. F.; Huang, C. Z.; Li, Y. F. Shape-and size-dependent catalysis activities of iron-terephthalic acid metal-organic frameworks. Sci. China Chem. 2015, 58, 1553–1560.

    Article  CAS  Google Scholar 

  42. Stavila, V.; Volponi, J.; Katzenmeyer, A. M.; Dixon, M. C.; Allendorf, M. D. Kinetics and mechanism of metal-organic framework thin film growth: Systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 2012, 3, 1531–1540.

    Article  CAS  Google Scholar 

  43. Hinterholzinger, F.; Scherb, C.; Ahnfeldt, T.; Stock, N.; Bein, T. Oriented growth of the functionalized metal-organic framework CAU-1 on -OH-and -COOH-terminated self-assembled monolayers. Phys. Chem. Chem. Phys. 2010, 12, 4515–4520.

    Article  CAS  Google Scholar 

  44. Ban, Y. J.; Li, Y. S.; Liu, X. L.; Peng, Y.; Yang, W. S. Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. MicroporousMesoporousMater. 2013, 173, 29–36.

    CAS  Google Scholar 

  45. McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) crystals. Cryst. Growth Design 2013, 13, 5481–5486.

    Article  CAS  Google Scholar 

  46. Hu, L.; Zhang, P.; Chen, Q. W.; Zhong, H.; Hu, X. Y.; Zheng, X. R.; Wang, Y.; Yan, N. Morphology-controllable synthesis of metal organic framework Cd3[Co(CN)6]2·nH2O nanostructures for hydrogen storage applications. Cryst. Growth Design 2012, 12, 2257–2264.

    Article  CAS  Google Scholar 

  47. Gao, J.; Huang, C. H.; Lin, Y. F.; Tong, P.; Zhang, L. In situ solvothermal synthesis of metal-organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr. 2016, 1436, 1–8.

    Article  CAS  Google Scholar 

  48. Ordonez, C.; Kinnibrugh, T. L.; Xu, H. W.; Lindline, J.; Timofeeva, T.; Wei, Q. Synthesis of framework isomer MOFs containing zinc and 4-tetrazolyl benzenecarboxylic acid via a structure directing solvothermal approach. Crystals 2015, 5, 193–205.

    Article  CAS  Google Scholar 

  49. Luo, F.; Che, Y. X.; Zheng, J. M. Construction of microporous metal-organic frameworks (MOFs) by Mn-O-C rod-like secondary building units (SBUs): Solvothermal synthesis, structure, thermostability, and magnetic properties. Inorg. Chem. Commun. 2008, 11, 358–362.

    Article  CAS  Google Scholar 

  50. Khan, N. A.; Kang, I. J.; Seok, H. Y.; Jhung, S. H. Facile synthesis of nano-sized metal-organic frameworks, chromium- benzenedicarboxylate, MIL-101. Chem. Eng. J. 2011, 166, 1152–1157.

    Article  CAS  Google Scholar 

  51. Bag, P. P.; Wang, X. S.; Cao, R. Microwave-assisted large scale synthesis of lanthanide metal-organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Trans. 2015, 44, 11954–11962.

    Article  CAS  Google Scholar 

  52. Zhu, W.; Liu, P. J.; Xiao, S. J.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B: Environ. 2015, 172-173, 46–51.

    Article  CAS  Google Scholar 

  53. Yang, H. M.; Song, X. L.; Yang, T. L.; Liang, Z. H.; Fan, C. M.; Hao, X. G. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSCAdv. 2014, 4, 15720–15726.

    CAS  Google Scholar 

  54. Sachdeva, S.; Pustovarenko, A.; Sudholter, E. J. R.; Kapteijn, F.; de Smet, L. C. P. M.; Gascon, J. Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis. CrystEngComm 2016, 18, 4018–4022.

    Article  CAS  Google Scholar 

  55. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 2009, 21, 2580–2582.

    Article  CAS  Google Scholar 

  56. Baser, H.; Schwieger, W. Ultrasonic monitoring of zeolite A and Metal Organic Frameworks (MOFs) formations: A comparative study. Stud. Surface Sci. Catal. 2008, 174, 455–458.

    Article  Google Scholar 

  57. Li, Z. Q.; Qiu, L. G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z. Y.; Jiang, X. Ultrasonic synthesis of the microporous metalorganic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80.

    Article  CAS  Google Scholar 

  58. Li, Z. Q.; Tai, Y. F.; Zhang, M.; Qiu, L. G. Ultrasonic synthesis Cu(INA)24H2O nanocrystals and catalytic oxidation of styrene. Chem. Res. Appl. 2014, 26, 13–17.

    CAS  Google Scholar 

  59. Ji, M.; Hao, C.; Wang, D. D.; Li, H. J.; Qiu, J. S. A time-dependent density functional theory study on the effect of electronic excited-state hydrogen bonding on luminescent MOFs. Dalton Trans. 2013, 42, 3464–3470.

    Article  CAS  Google Scholar 

  60. Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys. 2009, 11, 628–631.

    Article  CAS  Google Scholar 

  61. Mahata, P.; Sundaresan, A.; Natarajan, S. The role of temperature on the structure and dimensionality of MOFs: An illustrative study of the formation of manganese oxy-bis(benzoate) structures. Chem. Commun. 2007, 4471–4473. DOI: 10.1039/ B708060C.

    Google Scholar 

  62. Li, Y.; Wang, N.; Huang, J. Y.; Zhang, F. H.; Xiong, Y. J.; Cheng, Q.; Fang, J. F.; Zhu, F. F.; Long, Y.; Yue, S. T. KI-induced synthesis of highly connected 3D KI-LnIII heterobimetallic MOFs: Temperature-dependent structure and physical properties. CrystEngComm 2016, 18, 1570–1576.

    Article  CAS  Google Scholar 

  63. Mahata, P.; Prabu, M.; Natarajan, S. Role of temperature and time in the formation of infinite -M-O-M-linkages and isolated clusters in MOFs: A few illustrative examples. Inorg. Chem. 2008, 47, 8451–8463.

    Article  CAS  Google Scholar 

  64. Cheng, X. Q.; Zhang, A. F.; Hou, K. K.; Liu, M.; Wang, Y. X.; Song, C. S.; Zhang, G. L.; Guo, X. W. Size-and morphologycontrolled NH2-MIL-53(Al) prepared in DMF-water mixed solvents. Dalton Trans. 2013, 42, 13698–13705.

    Article  CAS  Google Scholar 

  65. Li, J.; Yang, G. P.; Hou, L.; Cui, L.; Li, Y. P.; Wang, Y. Y.; Shi, Q. Z. Three new solvent-directed 3D lead(II)-MOFs displaying the unique properties of luminescence and selective CO2 sorption. Dalton Trans. 2013, 42, 13590–13598.

    Article  CAS  Google Scholar 

  66. Ju, Z. F.; Yuan, D. Q. Wings waving: Coordinating solvent induced structural diversity of new Cu(II) flexible MOFs with crystal to crystal transformation and gas sorption capability. CrystEngComm 2013, 15, 9513–9520.

    Article  CAS  Google Scholar 

  67. Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2016, in press, DOI: 10.1016/j.arabjc.2016.01.003.

    Google Scholar 

  68. Polevaya, I. S.; Makitra, G. G.; Marshalok, G. A.; Kovalskyi, Y. P. Effect of the reactants molar ratio on the kinetics of cycloaddition of 2,3-dimethylbuta-1,3-diene to allyl methacrylate. Russ. J. Gen. Chem. 2012, 82, 1970–1974.

    Article  CAS  Google Scholar 

  69. Huang, K.; Qiu, L. P.; Meng, J. F.; Wang, D. Optimization of crystallization of magnesium ammonium phosphate: Initial phosphate concentration, PH and reactants molar ratio. Appl. Mech. Mater. 2013, 295-298, 1289–1292.

    Article  CAS  Google Scholar 

  70. Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

    Article  CAS  Google Scholar 

  71. Pal, M.; Mathews, N. R.; Santiago, P.; Mathew, X. A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. J. Nanopart. Res. 2012, 14, 916.

    Article  CAS  Google Scholar 

  72. Li, X. L.; Tian, W. G.; Xiao, C. X.; Stanton, A. L. D.; Pei, Y. C.; Jain, P. K.; Huang, W. Y. Synthesis of monodisperse palladium nanoclusters using metal-organic frameworks as sacrificial templates. ChemNanoMat 2016, 2, 810–815.

    Article  CAS  Google Scholar 

  73. Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267.

    Article  CAS  Google Scholar 

  74. Wang, Y.; Yang, H. Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem. Commun. 2006, 2545–2547.

    Google Scholar 

  75. Masoomi, M. Y.; Morsali, A. Morphological study and potential applications of nano metal-organic coordination polymers. RSCAdv. 2013, 3, 19191–19218.

    CAS  Google Scholar 

  76. Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.

    Article  CAS  Google Scholar 

  77. Fordham, S.; Wang, X.; Bosch, M.; Zhou, H. C. Lanthanide metal-organic frameworks: Syntheses, properties, and potential applications. In: Lanthanide Metal-Organic Frameworks. Structure and Bonding. Cheng, P., Ed.; Springer: Berlin Heidelberg, 2014.

    Google Scholar 

  78. Li, Y. W.; Yang, R. T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 2006, 128, 726–727.

    Article  CAS  Google Scholar 

  79. Li, J.-R.; Ma, Y. G.; McCarthy, M. C.; Sculley, J.; Yu, J. M.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823.

    Article  CAS  Google Scholar 

  80. Frost, H.; Düren, T.; Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metalorganic frameworks. J. Phys. Chem. B 2006, 110, 9565–9570.

    Article  CAS  Google Scholar 

  81. Ma, S. Q.; Zhou, H.-C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J. Am. Chem. Soc. 2006, 128, 11734–11735.

    Article  CAS  Google Scholar 

  82. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835.

    Article  CAS  Google Scholar 

  83. Hirscher, M. Hydrogen storage by cryoadsorption in ultrahigh-porosity metal-organic frameworks. Angew. Chem., Int. Ed. 2011, 50, 581–582.

    Article  CAS  Google Scholar 

  84. Yuan, D. Q.; Zhao, D.; Sun, D. F.; Zhou, H. C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem., Int. Ed. 2010, 49, 5357–5361.

    Article  CAS  Google Scholar 

  85. Kolotilov, S. V.; Pavlishchuk, V. V. Role of the chemical structure of metal-organic framework compounds in the adsorption of hydrogen. Theor. Exp. Chem. 2009, 45, 277–301.

    Article  CAS  Google Scholar 

  86. Xiang, Z. H.; Cao, D. P.; Shao, X. H.; Wang, W. C.; Zhang, J. W.; Wu, W. Z. Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation. Chem. Eng. Sci. 2010, 65, 3140–3146.

    Article  CAS  Google Scholar 

  87. Khan, N. A.; Jhung, S.-H. Facile syntheses of metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921–2926.

    Article  CAS  Google Scholar 

  88. Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.

    Article  CAS  Google Scholar 

  89. Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. Microwaveassisted synthesis of metal-organic frameworks. Dalton Trans. 2011, 40, 321–330.

    Article  CAS  Google Scholar 

  90. Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(BTC)3(H2O)3] and [Cu2(BTC)(OH)(H2O)]. Microporous MesoporousMater 2010, 132, 121–127.

    Article  CAS  Google Scholar 

  91. Zhuang, J. L.; Ceglarek, D.; Pethuraj, S.; Terfort, A. Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 2011, 21, 1442–1447.

    Article  CAS  Google Scholar 

  92. Yang, H. W.; Orefuwa, S.; Goudy, A. Study of mechanochemical synthesis in the formation of the metal-organic framework Cu3(BTC)2 for hydrogen storage. Microporous Mesoporous Mater. 2011, 143, 37–45.

    Article  CAS  Google Scholar 

  93. Wee, L. H.; Lohe, M. R.; Janssens, N.; Kaskel, S.; Martens, J. A. Fine tuning of the metal-organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 2012, 22, 13742–13746.

    Article  CAS  Google Scholar 

  94. Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R. K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G. Direct imaging of ALD deposited Pt nanoclusters inside the giant pores of MIL-101. Part. Part. Syst. Characteriz. 2016, 33, 382–387.

    Article  CAS  Google Scholar 

  95. Gordon, J.; Kazemian, H.; Rohani, S. MIL-53 (Fe), MIL-101, and SBA-15 porous materials: Potential platforms for drug delivery. Mater. Sci. Eng.: C 2015, 47, 172–179.

    Article  CAS  Google Scholar 

  96. Hinks, N. J.; McKinlay, A. C.; Xiao, B.; Wheatley, P. S.; Morris, R. E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 2010, 129, 330–334.

    Article  CAS  Google Scholar 

  97. Guo, J. F.; Fang, R. M.; Huang, C. Z.; Li, Y. F. Dual amplifying fluorescence anisotropy for detection of respiratory syncytial virus DNA fragments with size-control synthesized metal-organic framework MIL-101. RSC Adv. 2015, 5, 46301–46306.

    Article  CAS  Google Scholar 

  98. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.

    Article  CAS  Google Scholar 

  99. Qi, Z.-P.; Yang, J.-M.; Kang, Y.-S.; Sun, W.-Y. Morphology evolution and gas adsorption of porous metal-organic framework microcrystals. Dalton Trans. 2015, 44, 16888–16893.

    Article  CAS  Google Scholar 

  100. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

    Article  CAS  Google Scholar 

  101. Ma, M. Y.; Zacher, D.; Zhang, X. N.; Fischer, R. A.; Metzler-Nolte, N. A Method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks. Cryst. Growth Design 2011, 11, 185–189.

    Article  CAS  Google Scholar 

  102. Burrows, A. D.; Cassar, K.; Friend, R. M. W.; Mahon, M. F.; Rigby, S. P.; Warren, J. E. Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks. CrystEngComm 2005, 7, 548–550.

    Article  CAS  Google Scholar 

  103. Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23.

    Article  CAS  Google Scholar 

  104. Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. ChemInform abstract: Microwave-assisted synthesis of metal-organic frameworks. ChemInform. 2011, 42, 321–330.

    Article  Google Scholar 

  105. Blanita, G.; Borodi, G.; Lazar, M. D.; Bins, A. R.; Barbu-Tudoran, L.; Coldea, I.; Lupu, D. Microwave assisted non-solvothermal synthesis of metal-organic frameworks. RSC Adv. 2016, 6, 25967–25974.

    Article  CAS  Google Scholar 

  106. Wang, P. Y.; Liu, J.; Liu, C. F.; Zheng, B.; Zou, X. Q.; Jia, M. J.; Zhu, G. S. Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks. Chem. -Eur. J. 2016, 22, 16613–16620.

    Article  CAS  Google Scholar 

  107. Lin, Z. J.; Wragg, D. S.; Warren, J. E.; Morris, R. E. Anion control in the ionothermal synthesis of coordination polymers. J. Am. Chem. Soc. 2007, 129, 10334–10335.

    Article  CAS  Google Scholar 

  108. Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal-organic coordination polymers. Coord. Chem. Rev. 2015, 292, 1–14.

    Article  CAS  Google Scholar 

  109. Khoshhal, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Mohammadi, M. Study of the temperature and solvent content effects on the structure of Cu-BTC metal organic framework for hydrogen storage. RSC Adv. 2015, 5, 24758–24768.

    Article  CAS  Google Scholar 

  110. Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336–6338. DOI: 10.1039/B814740J.

    Google Scholar 

  111. Bradshaw, D.; Garai, A.; Huo, J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2012, 41, 2344–2381.

    Article  CAS  Google Scholar 

  112. Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106.

    Article  CAS  Google Scholar 

  113. Ranft, A.; Betzler, S. B.; Haase, F.; Lotsch, B. V. Additivemediated size control of MOF nanoparticles. CrystEngComm 2013, 15, 9296–9300.

    Article  CAS  Google Scholar 

  114. Yang, J.; Grzech, A.; Mulder, F. M.; Dingemans, T. J. The hydrogen storage capacity of mono-substituted MOF-5 derivatives: An experimental and computational approach. Microporous Mesoporous Mater. 2013, 171, 65–71.

    Article  CAS  Google Scholar 

  115. Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

    Article  CAS  Google Scholar 

  116. Eddaoudi, M.; Kim, J.; Vodak, D.; Sudik, A.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Geometric requirements and examples of important structures in the assembly of square building blocks. Proc. Natl. Acad. Sci. USA 2002, 99, 4900–4904.

    Article  CAS  Google Scholar 

  117. Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.

    Article  CAS  Google Scholar 

  118. Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.

    Article  CAS  Google Scholar 

  119. Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.

    Article  CAS  Google Scholar 

  120. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  CAS  Google Scholar 

  121. Guo, H. L.; Zhu, Y. Z.; Wang, S.; Su, S. Q.; Zhou, L.; Zhang, H. J. Combining coordination modulation with acid-base adjustment for the control over size of metal-organic frameworks. Chem. Mater. 2012, 24, 444–450.

    Article  CAS  Google Scholar 

  122. Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007, 129, 5324–5325.

    Article  CAS  Google Scholar 

  123. Zacher, D.; Liu, J. N.; Huber, K.; Fischer, R. A. Nanocrystals of [Cu3(btc)2] (HKUST-1): A combined time-resolved light scattering and scanning electron microscopy study. Chem. Commuun. 2009, 1031–1033.

    Google Scholar 

  124. Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 2016, 80, 24–27.

    Article  CAS  Google Scholar 

  125. Zhu, L. L.; Tan, C. F.; Gao, M. M.; Ho, G. W. Microreactors: Design of a metal oxide-organic framework (MoOF) foam microreactor: Solar-induced direct pollutant degradation and hydrogen generation (Adv. Mater. 47/2015). Adv. Mater. 2015, 27, 7681.

    Article  CAS  Google Scholar 

  126. Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.

    Article  CAS  Google Scholar 

  127. Guo, H. L.; Zhu, Y. Z.; Qiu, S. L.; Lercher, J. A.; Zhang, H. J. Coordination modulation induced synthesis of nanoscale Eu1-ITbI-metal-organic frameworks for luminescent thin films. Adv. Mater. 2010, 22, 4190–4192.

    Article  CAS  Google Scholar 

  128. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano-and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

    Article  CAS  Google Scholar 

  129. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chemistry 2011, 17, 6643–6651.

    Article  CAS  Google Scholar 

  130. Hu, Z. G.; Castano, I.; Wang, S. N.; Wang, Y. X.; Peng, Y. W.; Qian, Y. H.; Chi, C. L.; Wang, X. R.; Zhao, D. Modulator effects on the water-based synthesis of Zr/Hf metal-organic frameworks: Quantitative relationship studies between modulator, synthetic condition, and performance. Cryst. Growth Design 2016, 16, 2295–2301.

    Article  CAS  Google Scholar 

  131. Drache, F.; Bon, V.; Senkovska, I.; Getzschmann, J.; Kaskel, S. The modulator driven polymorphism of Zr(IV) based metalorganic frameworks. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160027.

    Article  CAS  Google Scholar 

  132. Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011, 21, 2220–2227.

    Article  CAS  Google Scholar 

  133. Shi, N. E.; Du, W.; Jin, X. L.; Zhang, Y.; Han, M.; Xu, Z.; Xie, L. H.; Huang, W. Surfactant charge mediated shape control of nano-or microscaled coordination polymers: The case of tetrapyridylporphine based metal complex. Cryst. Growth Design 2014, 14, 1251–1257.

    Article  CAS  Google Scholar 

  134. Gao, J. K.; Ye, K. Q.; Yang, L.; Xiong, W. W.; Ye, L.; Wang, Y; Zhang, Q. C. Growing crystalline zinc-1,3,5-benzenetricarboxylate metal-organic frameworks in different surfactants. Inorg. Chem. 2014, 53, 691–693.

    Article  CAS  Google Scholar 

  135. Tao, C. A.; Hu, Z. H.; Meng, L. Q.; Wang, F.; Wang, J. F. Sonochemical synthesis of photoluminescent nanoscale Eu(III)-containing metal-organic frameworks. Mater. Sci. 2015, 21, 554–558.

    Google Scholar 

  136. Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF Thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234.

    Article  CAS  Google Scholar 

  137. Sun, W. Z.; Zhai, X. S.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 2016, 289, 59–64.

    Article  CAS  Google Scholar 

  138. Gu, Z.-G.; Fang, H.-C.; Yin, P.-Y.; Tong, L.; Ying, Y.; Hu, S.-J.; Li, W.-S.; Cai, Y-P. A family of three-dimensional lanthanide-zinc heterometal-organic frameworks from 4,5-imidazoledicarboxylate and oxalate. Cryst. Growth Design 2011, 11, 2220–2227.

    Article  CAS  Google Scholar 

  139. Ghosh, S. K.; Kitagawa, S. Solvent as structure directing agent for the synthesis of novel coordination frameworks using a tripodal flexible ligand. CrystEngComm 2008, 10, 1739–1742.

    Article  CAS  Google Scholar 

  140. Fan, X. X.; Wang, W.; Li, W.; Zhou, J. W.; Wang, B.; Zheng, J.; Li, X. G. Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl. Mater. Interfaces 2014, 6, 14994–14999.

    Article  CAS  Google Scholar 

  141. Sun, F. X.; Zhu, G. S. Solvent-directed synthesis of chiral and non-centrosymmetric metal-organic frameworks based on pyridine-3,5-dicarboxylate. Inorg. Chem. Commun. 2013, 38, 115–118.

    Article  CAS  Google Scholar 

  142. Laurikenas, A.; Barkauskas, J.; Reklaitis, J.; Niaura, G.; Baltrunas, D.; Kareiva, A. Formation peculiarities of iron (III) acetate: Potential precursor for iron metal-organic frameworks (MOFs). Lithuanian J. Phys. 2016, 56, 35–41.

    Article  Google Scholar 

  143. Yoon, J. H.; Choi, S. B.; Oh, Y. J.; Seo, M. J.; Jhon, Y. H.; Lee, T. B.; Kim, D.; Choi, S. H.; Kim, J. A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3′(DMF)3.5. Catal. Today 2007, 120, 324–329.

    Article  CAS  Google Scholar 

  144. Zhang, S. L.; Jiao, Z.; Yao, W. X. A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J. Chromatogr. A 2014, 1371, 74–81.

    Article  CAS  Google Scholar 

  145. Debatin, F.; Thomas, A.; Kelling, A.; Hedin, N.; Bacsik, Z.; Senkovska, I.; Kaskel, S.; Junginger, M.; Müller, H.; Schilde, U. et al. In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2-and CO2-storage ability. Angew. Chem., Int. Ed 2010, 49, 1258–1262.

    Article  CAS  Google Scholar 

  146. Zhao, D.; Yuan, D. Q.; Yakovenko, A.; Zhou, H. C. A NbO-type metal-organic framework derived from a polyyne-coupled di-isophthalate linker formed in situ. Chem. Commun. 2010, 46, 4196–4198.

    Article  CAS  Google Scholar 

  147. Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.

    Article  CAS  Google Scholar 

  148. Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944–948.

    Article  CAS  Google Scholar 

  149. Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. Control over catenation in metal-organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 2009, 132, 950–952.

    Article  CAS  Google Scholar 

  150. Bury, W.; Fairen-Jimenez, D.; Lalonde, M. B.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. Control over catenation in pillared paddlewheel metal-organic framework materials via solventassisted linker exchange. Chem. Mater. 2013, 25, 739–744.

    Article  CAS  Google Scholar 

  151. Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. An interpenetrated framework material with hysteretic CO2 uptake. Chem.—Eur. J. 2010, 16, 276–281. 27

    Article  CAS  Google Scholar 

  152. Alavi, M. A.; Morsali, A. Synthesis and characterization of different nanostructured copper(II) metal-organic frameworks by a ligand functionalization and modulation method. CrystEngComm 2014, 16, 2246–2250.

    Article  CAS  Google Scholar 

  153. Buragohain, A.; Van Der Voort, P.; Biswas, S. Facile synthesis and gas adsorption behavior of new fonctionalized Al-MIL-101-X (X = -CH3, -NO2, -OCH3, -C6H4, -F2, -(CH3)2, -(OCH3)2 ) materials. Microporous Mesoporous Mater. 2015, 215, 91–97.

    Article  CAS  Google Scholar 

  154. Liu, B. T.; He, Y. P.; Han, L. P.; Singh, V.; Xu, X. N.; Guo, T.; Meng, F. Y.; Xu, X.; York, P.; Liu, Z. X. Microwave-assisted rapid synthesis of γ-cyclodextrin metal-organic frameworks for size control and efficient drug loading. Cryst. Growth Design 2017, 17, 1654–1660.

    Article  CAS  Google Scholar 

  155. Abazari, R.; Mahjoub, A. R.; Slawin, A. M. Z.; Carpenter-Warren, C. L. Morphology-and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrasonics Sonochem. 2018, 42, 594–608.

    Article  CAS  Google Scholar 

  156. Zou, Z.; Li, S. Q.; He, D. G.; He, X. X.; Wang, K. M.; Li, L. L.; Yang, X.; Li, H. F. A versatile stimulus-responsive metalorganic framework for size/morphology tunable hollow mesoporous silica and pH-triggered drug delivery. J. Mater. Chem. B 2017, 5, 2126–2132.

    Article  CAS  Google Scholar 

  157. Mao, Y. Y.; Su, B. B.; Cao, W.; Li, J. W.; Ying, Y. L.; Ying, W.; Hou, Y. J.; Sun, L. W.; Peng, X. S. Specific oriented metal-organic framework membranes and their facet-tuned separation performance. ACS Appl. Mater. Interfaces 2014, 6, 15676–15685.

    Article  CAS  Google Scholar 

  158. Wang, J. J.; Han, Y. Q.; Xu, H. T.; Xu, Z. L. Microporous assembly and shape control of a new Zn metal-organic framework: Morphology-dependent catalytic performance. Appl. Organom. Chem. 2018, 32, e4097.

    Article  CAS  Google Scholar 

  159. Liu, Y. F.; Liu, B. L.; Zhou, Q. F.; Zhang, T. Y.; Wu, W. B. Morphology effect of metal-organic framework HKUST-1 as a catalyst on benzene oxidation. Chem. Res. Chin. Univ. 2017, 33, 971–978.

    Article  CAS  Google Scholar 

  160. Sabouni, R.; Kazemian, H.; Rohani, S. Microwave synthesis of the CPM-5 metal organic framework. Chem. Eng. Technol. 2012, 35, 1085–1092.

    Article  CAS  Google Scholar 

  161. Liang, W. B.; D’Alessandro, D. M. Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun. 2013, 49, 3706–3708.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995). This research was also supported partially by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE), Republic of Korea. P. K. also want to thank the Science and Engineering Research Board (SERB), New Delhi, for funding under “Empowerment and Equity Opportunities for Excellence in Science” (No. EEQ/2016/000484).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pawan Kumar, Yong Sik Ok or Ki-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Vellingiri, K., Jo, SH. et al. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res. 11, 4441–4467 (2018). https://doi.org/10.1007/s12274-018-2039-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2039-3

Keywords

Navigation