Skip to main content
Log in

Flexible self-charging power units for portable electronics based on folded carbon paper

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The urgent demand for portable electronics has promoted the development of high-efficiency, sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young’s modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young’s modulus materials for wearable/portable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.

    Article  Google Scholar 

  2. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411–415.

    Article  Google Scholar 

  3. Gong, S.; Cheng, W. L. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 2017, 23, 1700648.

    Article  Google Scholar 

  4. Liu, R. Y.; Wang, J.; Sun, T.; Wang, M. J.; Wu, C. S.; Zou, H. Y.; Song, T.; Zhang, X. H.; Lee, S.-T.; Wang, Z. L. et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self- charging power unit with a total efficiency of 10.5%. Nano Lett. 2017, 17, 4240–4247.

    Article  Google Scholar 

  5. Wen, Z.; Guo, H. Y.; Zi, Y. L.; Yeh, M.-H.; Wang, X.; Deng, J. A.; Wang, J.; Li, S. M.; Hu, C. G.; Zhu, L. P. et al. Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526–6534.

    Article  Google Scholar 

  6. Shao, H. Y.; Wen, Z.; Cheng, P.; Sun, N.; Shen, Q. Q.; Zhou, C. J.; Peng, M. F.; Yang, Y. Q.; Xie, X. K.; Sun, X. H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 2017, 39, 608–615.

    Article  Google Scholar 

  7. Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  8. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  Google Scholar 

  9. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  10. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M.-H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (<5Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  Google Scholar 

  11. Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.

    Article  Google Scholar 

  12. Peng, H. S.; Fang, X. D.; Ranaei, S.; Wen, Z.; Porter, A. L. Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy 2017, 35, 358–369.

    Article  Google Scholar 

  13. Wang, J.; Wen, Z.; Zi, Y. L.; Lin, L.; Wu, C. S.; Guo, H. Y.; Xi, Y.; Xu, Y. L.; Wang, Z. L. Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv. Funct. Mater. 2016, 26, 3542–3548.

    Article  Google Scholar 

  14. Wang, X.; Wen, Z.; Guo, H. Y.; Wu, C. S.; He, X.; Lin, L.; Cao, X.; Wang, Z. L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376.

    Article  Google Scholar 

  15. Hu, Q. Y.; Wang, B.; Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Zhang, X. Q.; Zhou, J. Metal-free and non-fluorine paper-based generator. Nano Energy 2015, 14, 236–244.

    Article  Google Scholar 

  16. Zhong, J. W.; Zhu, H. L.; Zhong, Q. Z.; Dai, J. Q.; Li, W. B.; Jang, S.-H.; Yao, Y. G.; Henderson, D.; Hu, Q. Y.; Hu, L. B. et al. Self-powered human-interactive transparent nanopaper systems. ACS Nano 2015, 9, 7399–7406.

    Article  Google Scholar 

  17. Lee, J.-H.; Kim, J.; Kim, T. Y.; Al Hossain, M. S.; Kim, S.-W.; Kim, J. H. All-in-one energy harvesting and storage devices. J. Mater. Chem. A 2016, 4, 7983–7999.

    Article  Google Scholar 

  18. Wang, J.; Wen, Z.; Zi, Y. L.; Zhou, P. F.; Lin, J.; Guo, H. Y.; Xu, Y. L.; Wang, Z. L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076.

    Article  Google Scholar 

  19. Shen, Q. Q.; Xie, X. K.; Peng, M. F.; Sun, N.; Shao, H. Y.; Zheng, H. C.; Wen, Z.; Sun, X. H. Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 2018, doi: 10.1002/adfm.201703420.

    Google Scholar 

  20. Kim, J.; Lee, J.-H.; Lee, J.; Yamauchi, Y.; Choi, C. H.; Kim, J. H. Research update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Mater. 2017, 5, 073804.

    Article  Google Scholar 

  21. Zi, Y. L.; Wang, Z. L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5, 074103.

    Article  Google Scholar 

  22. Wen, Z.; Yeh, M.-H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. A.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.

    Article  Google Scholar 

  23. Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

    Article  Google Scholar 

  24. Pu, X.; Li, L. X.; Song, H. Q.; Du, C. H.; Zhao, Z. F.; Jiang, C. Y.; Cao, G. Z.; Hu, W. G.; Wang, Z. L. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 2015, 27, 2472–2478.

    Article  Google Scholar 

  25. Yi, F.; Wang, J.; Wang, X. F.; Niu, S. M.; Li, S. M.; Liao, Q. L.; Xu, Y. L.; You, Z.; Zhang, Y.; Wang, Z. L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 2016, 10, 6519–6525.

    Article  Google Scholar 

  26. Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. Z.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078–8086.

    Article  Google Scholar 

  27. Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324–7332.

    Article  Google Scholar 

  28. Lai, Y.-C.; Deng, J. A.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.

    Article  Google Scholar 

  29. Fan, Y. J.; Meng, X. S.; Li, H. Y.; Kuang, S. Y.; Zhang, L.; Wu, Y.; Wang, Z. L.; Zhu, G. Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv. Mater. 2017, 29, 1603115.

    Article  Google Scholar 

  30. Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.

    Article  Google Scholar 

  31. Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

    Article  Google Scholar 

  32. Wu, C. S.; Wang, X.; Lin, L.; Guo, H. Y.; Wang, Z. L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 2016, 10, 4652–4659.

    Article  Google Scholar 

  33. Guo, H. Y.; Yeh, M.-H.; Zi, Y. L.; Wen, Z.; Chen, J.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 2017, 11, 4475–4482.

    Article  Google Scholar 

  34. Yang, P.-K.; Lin, Z.-H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J.-H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.

    Article  Google Scholar 

  35. Guo, H. Y.; Yeh, M.-H.; Lai, Y.-C.; Zi, Y. L.; Wu, C. S.; Wen, Z.; Hu, C. G.; Wang, Z. L. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 2016, 10, 10580–10588.

    Article  Google Scholar 

  36. Zhang, X. H.; Lu, X. H.; Shen, Y. Q.; Han, J. B.; Yuan, L. Y.; Gong, L.; Xu, Z.; Bai, X. D.; Wei, M.; Tong, Y. X. et al. Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 2011, 47, 5804–5806.

    Article  Google Scholar 

  37. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.

    Article  Google Scholar 

  38. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  Google Scholar 

  39. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  Google Scholar 

  40. Sun, N.; Wen, Z.; Zhao, F. P.; Yang, Y. Q.; Shao, H. Y.; Zhou, C. J.; Shen, Q. Q.; Feng, K.; Peng, M. F.; Li, Y. G. et al. All flexible electrospun papers based self-charging power system. Nano Energy 2017, 38, 210–217.

    Article  Google Scholar 

  41. Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.

    Article  Google Scholar 

  42. Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Hu, Q. Y.; Zhou, J.; Wang, Z. L. A paper-based nanogenerator as a power source and active sensor. Energy Environ. Sci. 2013, 6, 1779–1784.

    Article  Google Scholar 

  43. Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130–7136.

    Article  Google Scholar 

  44. Zi, Y. l.; Guo, H. Y.; Wang, J.; Wen, Z.; Li, S. M.; Hu, C. G.; Wang, Z. L. An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 2017, 31, 302–310.

    Article  Google Scholar 

  45. Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Wen, Zhong Lin Wang or Xuhui Sun.

Electronic supplementary material

Supplementary material, approximately 1.21 MB.

Supplementary material, approximately 4.08 MB.

Supplementary material, approximately 4.54 MB.

Flexible self-charging power units for portable electronics based on folded carbon paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Yang, Y., Sun, N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 11, 4313–4322 (2018). https://doi.org/10.1007/s12274-018-2018-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2018-8

Keywords

Navigation