Skip to main content
Log in

Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries are promising electrochemical energy storage devices because of their high theoretical specific capacity and energy density. An ideal sulfur host should possess high conductivity and embrace the physical confinement or strong chemisorption to dramatically suppress the polysulfide dissolution. Herein, uniform TiN hollow nanospheres with an average diameter of ~160 nm have been reported as highly efficient lithium polysulfide reservoirs for high-performance lithium-sulfur batteries. Combining the high conductivity and chemical trapping of lithium polysulfides, the obtained S/TiN cathode of 70 wt.% sulfur content in the composite delivered an excellent long-life cycling performance at 0.5C and 1.0C over 300 cycles. More importantly, a stable capacity of 710.4 mAh·g−1 could be maintained even after 100 cycles at 0.2C with a high sulfur loading of 3.6 mg·cm−1. The nature of the interactions between TiN and lithium polysulfide species was investigated by X-ray photoelectron spectroscopy studies. Theoretical calculations were also carried out and the results revealed a strong binding between TiN and the lithium polysulfide species. It is expected that this class of conductive and polar materials would pave a new way for the high-energy lithium-sulfur batteries in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferriteball-in-ball hollow spheres: General synthesis, formation mechanisms and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.

    Article  Google Scholar 

  3. Liu, B.; Wang, X. F.; Liu, B. Y.; Wang, Q. F.; Tan, D. S.; Song, W. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 2013, 6, 525–534.

    Article  Google Scholar 

  4. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  Google Scholar 

  5. Xia, H.; Xiong, W.; Lim, C. K.; Yao, Q. F.; Wang, Y. D.; Xie, J. P. Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 2014, 7, 1797–1808.

    Article  Google Scholar 

  6. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium−sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  Google Scholar 

  7. Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

    Article  Google Scholar 

  8. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium−sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  9. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  10. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  11. He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium−sulfur battery cathodes. ACS Nano 2013, 7, 10920–10930.

    Article  Google Scholar 

  12. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium−sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

    Article  Google Scholar 

  13. Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium−sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

    Article  Google Scholar 

  14. Cheng, X. B.; Huang, J. Q.; Zhang, Q.; Peng, H. J.; Zhao, M. Q.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium−sulfur batteries. Nano Energy 2014, 4, 65–72.

    Article  Google Scholar 

  15. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium−sulfur-battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  Google Scholar 

  16. Zheng, M. B.; Zhang, S. T.; Chen, S. Q.; Lin, Z. X.; Pang, H.; Yu, Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium−sulfur batteries. Nano Res. 2017, 10, 4305–4317.

    Article  Google Scholar 

  17. Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167–3172.

    Article  Google Scholar 

  18. Dong, K.; Wang, S. P.; Zhang, H. Y.; Wu, J. P. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium−sulfur batteries. Mater. Res. Bull. 2013, 48, 2079–2083.

    Article  Google Scholar 

  19. He, Y. Y.; Xu, L. Q.; Li, C. C.; Chen, X. X.; Xu, G.; Jiao, X. Y. Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries. Nano Res. in press, DOI: 10.1007/s12274-017-1921-8.

  20. Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium−sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  21. Liang, X.; Nazar, L. F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 2016, 10, 4192–4198.

    Article  Google Scholar 

  22. Wang, X. L.; Li, G.; Li, J. D.; Zhang, Y. N.; Wook, A.; Yu, A. P.; Chen, Z. W. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium−sulfur batteries. Energy Environ. Sci. 2016, 9, 2533–2538.

    Article  Google Scholar 

  23. Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

    Article  Google Scholar 

  24. Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100 (V) and MIL-100 (V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium−sulfur batteries. Nano Res. 2017, 10, 344–353.

    Article  Google Scholar 

  25. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium−sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    Article  Google Scholar 

  26. Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

    Article  Google Scholar 

  27. Tao, X. Y.; Wang, J. G.; Ying, Z, G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting Magnéli-phase TinO2n−1 Nanomaterials for improving lithium−sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    Article  Google Scholar 

  28. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium−sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

    Article  Google Scholar 

  29. Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium−sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

    Article  Google Scholar 

  30. Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

    Article  Google Scholar 

  31. Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium−sulfur batteries. Nat. Commun. 2016, 7, 13065.

    Article  Google Scholar 

  32. Avasarala, B.; Haldar, P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim Acta 2010, 55, 9024–9034.

    Article  Google Scholar 

  33. Dong, S. M.; Chen, X.; Gu, L.; Zhou, X. H.; Li, L. F.; Liu, Z. H.; Han, P. X.; Xu, H. X.; Yao, J. H.; Wang, H. B. et al. One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ. Sci. 2011, 4, 3502–3508.

    Article  Google Scholar 

  34. Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Somh, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575–1583.

    Article  Google Scholar 

  35. Zhang, J. W.; Zhang, J. W.; Cai, W.; Zhang, F. L.; Yu, L. G.; Wu, Z. S.; Zhang, Z. J. Improving electrochemical properties of spinel lithium titanate by incorporation of titanium nitride via high-energy ball-milling. J. Power Sources 2012, 211, 133–139.

    Article  Google Scholar 

  36. Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium−sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

    Article  Google Scholar 

  37. Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.

    Article  Google Scholar 

  38. Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium−sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070.

    Article  Google Scholar 

  39. Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1606728.

    Article  Google Scholar 

  40. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    Article  Google Scholar 

  41. Balogun, M. S.; Yu, M. H,; Li, C.; Zhai, T.; Liu, Y.; Lu, X. H.; Tong, Y. X. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825–10829.

    Article  Google Scholar 

  42. Zhao, D.; Cui, Z. T.; Wang, S. G.; Qin, J. W.; Cao, M. H. VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 7914–7923.

    Article  Google Scholar 

  43. Zhou, X. H.; Shang, C. Q.; Gu, L.; Dong, S. M.; Chen, X.; Han, P. X.; Li, L. F.; Yao, J. H.; Liu, Z. H.; Xu, H. X. et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2011, 3, 3058–3063.

    Article  Google Scholar 

  44. Hao, Z. X.; Yuan, L. X.; Chen, C. J.; Xiang, J. W.; Li, Y. Y.; Huang, Z. M.; Hu, P.; Huang, Y. H. TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 17711–17717.

    Article  Google Scholar 

  45. Deng, D. R.; An, T. H.; Li, Y. J.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li–S batteries. J. Mater. Chem. A 2016, 4, 16184–16190.

    Article  Google Scholar 

  46. Mosavati, N.; Chitturi, V. R.; Salley, S. O.; Ng, K. Y. S. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J. Power Sources 2016, 321, 87–93.

    Article  Google Scholar 

  47. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

    Article  Google Scholar 

  48. Zhang, J.; You, C. Y.; Zhang, W. H.; Wang, J.; Guo, S. H.; Yang, R.; Xu, Y. H. Conductive bridging effect of TiN nanoparticles on the electrochemical performance of TiN@CNT-S composite cathode. Electrochim. Acta 2017, 250, 159–166.

    Article  Google Scholar 

  49. Chen, X. B.; Glans, P. A.; Qiu, X. F.; Dayal, S.; Jennings, W. D.; Smith, K. E.; Burda, C.; Guo, J. H. X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C-and S-doped TiO2. J. Electron Spectrosc. Relat. Phenom. 2008, 162, 67–73.

    Article  Google Scholar 

  50. Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium−sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

    Article  Google Scholar 

  51. Pang, Q.; Nazar, L. F. Long-life and high-areal-capacity Li−S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 2016, 10, 4111–4118.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (No. 21471091), 111 Project (No. B12015), the Fundamental Research Funds of Shandong University (No. 2015JC007), Academy of Sciences large apparatus United Fund (No. 11179043), and the Taishan Scholar Project of Shandong Province (No. ts201511004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Lu or Liqiang Xu.

Electronic supplementary material

12274_2018_2017_MOESM1_ESM.pdf

Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Shi, J., Zhu, L. et al. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 11, 4302–4312 (2018). https://doi.org/10.1007/s12274-018-2017-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2017-9

Keywords

Navigation