Skip to main content
Log in

Stimuli-responsive gel-micelles with flexible modulation of drug release for maximized antitumor efficacy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Engineered stimuli-responsive drug delivery devices hold vast promise in biological applications for disease treatment due to their maximized therapeutic efficacy. In this study, a novel, stably cross-linked, and pH-sensitive biodegradable gel-micelle was constructed with amphiphilic conjugates of trimethylene dipiperidine-methacrylic anhydride-hyaluronic acid-stearylamine (TMDP-MA-HA-SA, TMHS) to improve tumor-targeting with flexible intracellular delivery of paclitaxel (PTX).The cross-linked methacrylate bonds significantly improved the biostability of TMHS gel-micelle (~ 200 nm) over the non-cross-linked under physiological conditions, while hyaluronic acid plays an important role in active tumor targetability. The gradual degradation of cross-linked hyaluronic acid shell was triggered by the concentrated hyaluronidase. Meanwhile, under acidic conditions (pH < 6.5), the tertiary amines of pH-sensitive TMDP moieties were protonated and thereby solubilized the gel-micellar core-portions. The resultant pH-triggered inner-core spaces rapidly prompted PTX release in the presence of multiple cytosolic enzymes that mainly degraded the remaining hydrophobic stearylamine core. During the in vitro cytotoxicity assay, PTX-loaded TMHS gel-micelles (CLTMHSPTX) revealed anticancer efficacy against human hepatocellular carcinoma HepG2 cells with IC50 of 1.42 μg/mL (PTX concentration), significantly lower than other groups. In parallel, the in vivo anti-tumor efficacy of CLTMHSPTX gel-micelles against BALB/c xenograft tumor animal model demonstrated the greater tumor growth inhibition capacity of 72.06%, compared to other treatment groups at a safe concentration. Consequently, the cross-linked and stimuli-responsive CLTMHSPTX gel-micelles hold a great potential for flexible modulation of intracellular delivery of hydrophobic anticancer drugs with maximized antitumor efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuang, H. H.; Ku, S. H.; Kokkoli, E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv. Drug Deliver. Rev. 2016, 110–111, 80–101.

    Google Scholar 

  2. Jian, C.; Xin, T.; Jie, Z.; Shi, T.; Peng, Z.; Chao, L. Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy. Acta Biomater. 2016, 30, 155–167.

    Article  Google Scholar 

  3. Sahu, P.; Kashaw, S. K.; Jain, S.; Sau, S.; Iyer, A. K. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J. Control. Release 2017, 253, 122–136.

    Article  Google Scholar 

  4. Stocke, N. A.; Sethi, P.; Jyoti, A.; Chan, R.; Arnold, S. M.; Hilt, J. Z.; Upreti, M. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer. Biomaterials 2017, 120, 115–125.

    Article  Google Scholar 

  5. Liu, Y.; Wan, G. Y.; Guo, H.; Liu, Y. Y.; Zhou, P.; Wang, H. M.; Wang, D.; Zhang, S. P.; Wang, Y. S.; Zhang, N. A multifunctional nanoparticle system combines sonodynamic therapy and chemotherapy to treat hepatocellular carcinoma. Nano Res. 2017, 10, 834–855.

    Article  Google Scholar 

  6. Chen, Y.; Li, H. H.; Deng, Y. Y.; Sun, H. F.; Xue, K.; Ci, T. Y. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater. 2017, 51, 374–392.

    Article  Google Scholar 

  7. Cirillo, G.; Spizzirri, U. G.; Curcio, M.; Hampel, S.; Vittorio, O.; Restuccia, D.; Picci, N.; Iemma, F. Carbon nanohybrids as electro-responsive drug delivery systems. Mini Rev. Med. Chem. 2016, 16, 658–667.

    Article  Google Scholar 

  8. Li, T. S.; Amari, T.; Semba, K.; Yamamoto, T.; Takeoka, S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1219–1227.

    Article  Google Scholar 

  9. Meng, H.; Wang, M. Y.; Liu, H. Y.; Liu, X. S.; Situ, A.; Wu, B.; Ji, Z. X.; Chang, C. H.; Nel, A. E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015, 9, 3540–3557.

    Article  Google Scholar 

  10. Liao, J. W.; Liu, P. P.; Hou, G. X.; Shao, J. J.; Jing, Y.; Liu, K. Y.; Lu, W. H.; Wen, S. J.; Hu, Y. M.; Peng, H. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling. Mol. Cancer. 2017, 16, 51.

    Article  Google Scholar 

  11. Harnoy, A. J.; Rosenbaum, I.; Tirosh, E.; Ebenstein, Y.; Shaharabani, R.; Beck, R.; Amir, R. J. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J. Am. Chem. Soc. 2014, 136, 7531–7534.

    Article  Google Scholar 

  12. Davaa, E.; Lee, J.; Jenjob, R.; Yang, S. G. Mt1-mmp responsive doxorubicin conjugated poly (lactic-co-glycolic acid)/poly (styrene- alt-maleic anhydride) core/shell microparticles for intrahepatic arterial chemotherapy of hepatic cancer. ACS Appl. Mater. Interfaces 2017, 9, 71–79.

    Article  Google Scholar 

  13. Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419–1431.

    Article  Google Scholar 

  14. Mizrahy, S.; Peer, D. Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev. 2012, 41, 2623–2640.

    Article  Google Scholar 

  15. Liang, X. L.; Fang, L.; Li, X. D.; Zhang, X.; Wang, F. Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy. Biomaterials 2017, 132, 72–84.

    Article  Google Scholar 

  16. Cai, Y. P.; López-Ruiz, E.; Wengel, J.; Creemers, L. B.; Howard, K. A. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. J. Control. Release 2017, 253, 153–159.

    Article  Google Scholar 

  17. Zhou, B.; Weigel, J. A.; Fauss, L.; Weigel, P. H. Identification of the hyaluronan receptor for endocytosis (HARE). J. Biol. Chem. 2000, 275, 37733–37741.

    Article  Google Scholar 

  18. Yang, C. C.; Li, C.; Zhang, P.; Wu, W.; Jiang, X. Q. Redox responsive hyaluronic acid nanogels for treating rhamm (CD168) over-expressive cancer, both primary and metastatic tumors. Theranostics 2017, 7, 1719–1734.

    Article  Google Scholar 

  19. Wickens, J. M.; Alsaab, H. O.; Kesharwani, P.; Bhise, K.; Amin, M. C. I. M.; Tekade, R. K.; Gupta, U.; Iyer, A. K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today 2017, 22, 665–680.

    Article  Google Scholar 

  20. Jeong, J. Y.; Hong, E. H.; Lee, S. Y.; Lee, J. Y.; Song, J. H.; Ko, S. H.; Shim, J. S.; Choe, S.; Kim, D. D.; Ko, H. J. et al. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater. 2017, 53, 414–426.

    Article  Google Scholar 

  21. Zhu, D. Q.; Wang, H. Y.; Trinh, P.; Heilshorn, S. C.; Yang, F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials 2017, 127, 132–140.

    Article  Google Scholar 

  22. Noh, I.; Kim, H. O.; Choi, J.; Choi, Y.; Dong, K. L.; Huh, Y. M.; Haam, S. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials 2015, 53, 763–774.

    Article  Google Scholar 

  23. Han, J.; Park, W.; Park, S.; Na, K. Photosensitizer-conjugated hyaluronic acid-shielded polydopamine nanoparticles for targeted photo-mediated tumor therapy. ACS Appl. Mater. Interfaces 2016, 8, 7739–7747.

    Article  Google Scholar 

  24. Deng, C.; Jiang, Y. J.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012, 7, 467–480.

    Article  Google Scholar 

  25. Brugués, A. P.; Naveros, B. C.; Calpena Campmany, A. C.; Pastor, P. H.; Saladrigas, R. F.; Lizandra, C. R. Developing cutaneous applications of paromomycin entrapped in stimuli- sensitive block copolymer nanogel dispersions. Nanomedicine 2015, 10, 227–240.

    Article  Google Scholar 

  26. Tang, L. M.; Zhou, M. L.; Huang, Y.; Zhong, J. J.; Zhou, Z.; Luo, K. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer-doxorubicin conjugate-based nanoparticles for cancer therapy. Polymer Chem. 2017, 8, 2370–2380.

    Article  Google Scholar 

  27. Zhou, Z. W.; Li, H. P.; Wang, K. K.; Guo, Q.; Li, C. Z.; Jiang, H. L.; Hu, Y. Q.; Oupicky, D.; Sun, M. J. Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy. ACS Appl. Mater. Interfaces 2017, 9, 14576–14589.

    Article  Google Scholar 

  28. Yang, C. C.; Wang, X.; Yao, X. K.; Zhang, Y. J.; Wu, W.; Jiang, X. Q. Hyaluronic acid nanogels with enzyme-sensitive cross- linking group for drug delivery. J. Control. Release 2015, 205, 206–217.

    Article  Google Scholar 

  29. Guan, X. W.; Li, Y. H.; Jiao, Z. X.; Chen, J.; Guo, Z. P.; Tian, H. Y.; Chen, X. S. A pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomater. 2013, 9, 7672–7678.

    Article  Google Scholar 

  30. Wang, D. G.; Wang, T. T.; Liu, J. P.; Yu, H. J.; Shi, J.; Bing, F.; Zhou, F. Y.; Fu, Y. L.; Yin, Q.; Zhang, P. C. et al. Acid-activatable versatile micelleplexes for PD-L1 blockade- enhanced cancer photodynamic immunotherapy. Nano Lett. 2016, 16, 5503–5513.

    Article  Google Scholar 

  31. Liu, J.; Huang, Y. R.; Kumar, A.; Tan, A.; Jin, S. B.; Mozhi, A.; Liang, X. J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 2014, 32, 693–710.

    Article  Google Scholar 

  32. Ma, J.; Kang, K.; Yi, Q. Y.; Zhang, Z. R.; Gu, Z. W. Multiple pH responsive zwitterionic micelles for stealth delivery of anticancer drugs. RSC Adv. 2016, 6, 64778–64790.

    Article  Google Scholar 

  33. Cong, T. H.; Kang, S. W.; Li, Y.; Kim, B. S.; Lee, D. S. Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system. Soft Matter 2011, 7, 8984–8990.

    Article  Google Scholar 

  34. Liu, Y. H.; Sun, J.; Cao, W.; Yang, J. H.; Lian, H.; Li, X.; Sun, Y. H.; Wang, Y. J.; Wang, S. L.; He, Z. G. Dual targeting folate- conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharmaceutics 2011, 421, 160–169.

    Article  Google Scholar 

  35. Hachet, E.; Van Den Berghe, H.; Bayma, E.; Block, M.; Auzély-Velty, R. Design of biomimetic cell-interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties. Biomacromolecules 2012, 13, 1818–1827.

    Article  Google Scholar 

  36. Cui, C.; Xue, Y. N.; Wu, M.; Zhang, Y.; Yu, P.; Liu, L.; Zhuo, R. X.; Huang, S. W. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials 2013, 34, 3858–3869.

    Article  Google Scholar 

  37. Jiang, Y.; Wang, X. Z.; Liu, X.; Lv, W.; Zhang, H. J.; Zhang, M. W.; Li, X. R.; Xin, H. L.; Xu, Q. W. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 211–217.

    Article  Google Scholar 

  38. Cho, E. J.; Sun, B.; Doh, K. O.; Wilson, E. M.; Torregrosa-Allen, S.; Elzey, B. D.; Yeo, Y. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials 2015, 37, 312–319.

    Article  Google Scholar 

  39. Ding, X. F.; Wang, W.; Wang, Y. Z.; Bao, X. L.; Wang, Y.; Wang, C.; Chen, J.; Zhang, F. R.; Zhou, J. P. Versatile reticular polyethylenimine derivative-mediated targeted drug and gene codelivery for tumor therapy. Mol. Pharmaceutics 2014, 11, 3307–3321.

    Article  Google Scholar 

  40. Han, S.; Liu, Y.; Nie, X.; Xu, Q.; Jiao, F.; Li, W.; Zhao, Y.; Wu, Y.; Chen, C. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid- co-lactic acid)/DPPE co-polymer nanoparticles. Small 2012, 8, 1596–1606.

    Article  Google Scholar 

  41. Yue, J.; Liu, S.; Wang, R.; Hu, X. L.; Xie, Z. G.; Huang, Y. B.; Jing, X. B. Transferrin-conjugated micelles: Enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol. Pharmaceutics 2012, 9, 1919–1931.

    Article  Google Scholar 

  42. Raemdonck, K.; Martens, T. F.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliver. Rev. 2013, 65, 1123–1147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Zhou or Yang Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouameur, D., Cheng, H., Opoku-Damoah, Y. et al. Stimuli-responsive gel-micelles with flexible modulation of drug release for maximized antitumor efficacy. Nano Res. 11, 4245–4264 (2018). https://doi.org/10.1007/s12274-018-2012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2012-1

Navigation