Skip to main content
Log in

Development, applications, and future directions of triboelectric nanogenerators

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Since the invention of the triboelectric nanogenerator (TENG) in 2012, it has become one of the most vital innovations in energy harvesting technologies. The TENG has seen enormous progress to date, particularly in applications for energy harvesting and self-powered sensing. It starts with the simple working principles of the triboelectric effect and electrostatic induction, but can scavenge almost any kind of ambient mechanical energy in our daily life into electricity. Extraordinary output performance optimization of the TENG has been achieved, with high area power density and energy conversion efficiency. Moreover, TENGs can also be utilized as self-powered active sensors to monitor many environmental parameters. This review describes the recent progress in mainstream energy harvesting and self-powered sensing research based on TENG technology. The birth and development of the TENG are introduced, following which structural designs and performance optimizations for output performance enhancement of the TENG are discussed. The major applications of the TENG as a sustainable power source or a self-powered sensor are presented. The TENG, with rationally designed structures, can convert irregular and mostly low-frequency mechanical energies from the environment, such as human motion, mechanical vibration, moving automobiles, wind, raindrops, and ocean waves. In addition, the development of self-powered active sensors for a variety of environmental simulations based on the TENG is presented. The TENG plays a great role in promoting the development of emerging Internet of Things, which can make everyday objects connect more smartly and energy-efficiently in the coming years. Finally,the future directions and perspectives of the TENG are outlined. The TENG is not only a sustainable micro-power source for small devices, but also serves as a potential macro-scale generator of power from water waves in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiptmair R. Finite elements in computational electromagnetism. Acta Numer. 2002, 11, 237–339.

    Article  Google Scholar 

  2. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  3. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  4. Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

    Article  CAS  Google Scholar 

  5. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  CAS  Google Scholar 

  6. Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.

    Article  CAS  Google Scholar 

  7. Zhang, G. J.; Liao, Q. L.; Zhang, Z.; Liang, Q. J.; Zhao, Y. L.; Zheng, X.; Zhang, Y. Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 2016, 3, 1500257.

    Article  CAS  Google Scholar 

  8. Zhang, G. J.; Liao, Q. L.; Ma, M. Y.; Zhang, Z.; Si, H. N.; Liu, S.; Zheng, X.; Ding, Y.; Zhang, Y. A rationally designed output current measurement procedure and comprehensive understanding of the output characteristics for piezoelectric nanogenerators. Nano Energy 2016, 30, 180–186.

    Article  CAS  Google Scholar 

  9. Yang, Y.; Guo, W.; Wang, X. Q.; Wang, Z. Z.; Qi, J. J.; Zhang, Y. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett. 2012, 12, 1919–1922.

    Article  CAS  Google Scholar 

  10. Zhao, Y. L.; Liao, Q. L.; Zhang, G. J.; Zhang, Z.; Liang, Q. J.; Liao, X. Q.; Zhang, Y. High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 2015, 11, 719–727.

    Article  CAS  Google Scholar 

  11. Yang, Y.; Pradel, K. C.; Jing, Q. S.; Wu, J. M.; Zhang, F.; Zhou, Y. S.; Zhang, Y.; Wang, Z. L. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano 2012, 6, 6984–6989.

    Article  CAS  Google Scholar 

  12. Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  13. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  CAS  Google Scholar 

  14. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  CAS  Google Scholar 

  15. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  16. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  CAS  Google Scholar 

  17. Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.

    Article  CAS  Google Scholar 

  18. Zhang, H. L.; Yang, Y.; Zhong, X. D.; Su, Y. J.; Zhou, Y. S.; Hu, C. G.; Wang, Z. L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 2014, 8, 680–689.

    Article  CAS  Google Scholar 

  19. Yi, F.; Lin, L.; Niu, S. M.; Yang, P. K.; Wang, Z. N.; Chen, J.; Zhou, Y. S.; Zi, Y. L.; Wang, J.; Liao, Q. L. et al. Stretchable- rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 2015, 25, 3688–3696.

    Article  CAS  Google Scholar 

  20. Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple- cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

    Article  CAS  Google Scholar 

  21. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric- effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  CAS  Google Scholar 

  22. Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

    Article  CAS  Google Scholar 

  23. Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Yi, F.; Han, L. H.; Zhang, G. J.; Liu, S.; Liao, X. Q.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017, 32, 389–396.

    Article  CAS  Google Scholar 

  24. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  CAS  Google Scholar 

  25. Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.

    Article  CAS  Google Scholar 

  26. Zhou, Y. S.; Zhu, G.; Niu, S. M.; Liu, Y.; Bai, P.; Jing, Q. S.; Wang, Z. L. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 2014, 26, 1719–1724.

    Article  CAS  Google Scholar 

  27. Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836–3842.

    Article  CAS  Google Scholar 

  28. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  CAS  Google Scholar 

  29. Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

    Article  CAS  Google Scholar 

  30. Liang, Q. J.; Yan, X. Q.; Gu, Y. S.; Zhang, K.; Liang, M. Y.; Lu, S. N.; Zheng, X.; Zhang, Y. Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci. Rep. 2015, 5, 9080.

    Article  CAS  Google Scholar 

  31. Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

    Article  CAS  Google Scholar 

  32. Ma, M. Y.; Liao, Q. L.; Zhang, G. J.; Zhang, Z.; Liang, Q. J.; Zhang, Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 2015, 25, 6489–6494.

    Article  CAS  Google Scholar 

  33. Bai, P.; Zhu, G.; Jing, Q. S.; Wu, Y.; Yang, J.; Chen, J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Transparent and flexible barcode based on sliding electrification for self-powered identification systems. Nano Energy 2015, 12, 278–286.

    Article  CAS  Google Scholar 

  34. Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Adams, K.; Lee, S.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401–1407.

    Article  CAS  Google Scholar 

  35. Yang, P.-K.; Lin, Z.-H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J.-H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.

    Article  CAS  Google Scholar 

  36. Yang, Y.; Zhang, H. L.; Lin, Z.-H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.

    Article  CAS  Google Scholar 

  37. Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

    Article  CAS  Google Scholar 

  38. Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

    Article  CAS  Google Scholar 

  39. Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.

    Article  CAS  Google Scholar 

  40. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  41. Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

    Article  CAS  Google Scholar 

  42. Wang, S. H.; Niu, S. M.; Yang, J.; Lin, L.; Wang, Z. L. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 2014, 8, 12004–12013.

    Article  CAS  Google Scholar 

  43. Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

    Article  CAS  Google Scholar 

  44. Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2017, 10, 320–330.

    Article  CAS  Google Scholar 

  45. Bai P.; Zhu G.; Zhou Y. S.; Wang S.; Ma, J.; Zhang G.; Wang Z. L. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014, 7, 990–997.

    Article  CAS  Google Scholar 

  46. Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K.-S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H.-J. et al. Nanogenerators: Transparent flexible graphene triboelectric nanogenerators (Adv. Mater. 23/2014). Adv. Mater. 2014, 26, 3778.

    Article  Google Scholar 

  47. Diaz, A. F.; Felix-Navarro, R. M. A semi-quantitative triboelectric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277–290.

    Article  CAS  Google Scholar 

  48. Shin, S.-H.; Kwon, Y. H.; Kim, Y.-H.; Jung, J.-Y.; Lee, M. H.; Nah, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 2015, 9, 4621–4627.

    Article  CAS  Google Scholar 

  49. Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G. T.; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.

    Article  CAS  Google Scholar 

  50. Vasandani, P.; Mao, Z.-H.; Jia, W. Y.; Sun, M. G. Design of simulation experiments to predict triboelectric generator output using structural parameters. Simul. Model. Pract. Th. 2016, 68, 95–107.

    Article  Google Scholar 

  51. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

    Article  CAS  Google Scholar 

  52. Wang, S. H.; Zi, Y. L.; Zhou, Y. S.; Li, S. M.; Fan, F. R.; Lin, L.; Wang, Z. L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 2016, 4, 3728–3734.

    Article  CAS  Google Scholar 

  53. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Article  CAS  Google Scholar 

  54. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  CAS  Google Scholar 

  55. Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

    Article  CAS  Google Scholar 

  56. Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

    Article  CAS  Google Scholar 

  57. Zhang, Q.; Liang, Q. J.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Ding, Y.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Zhang, Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 2018, 28, 1703801.

    Article  CAS  Google Scholar 

  58. Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Zhang, G. J.; Gao, F. F.; Zhao, X.; Zhang, Q.; Xun, X. C.; Zhang, Z. M.; Zhang, Y. Integrated hybrid nanogenerator for gas energy recycle and purification. Nano Energy 2017, 39, 524–531.

    Article  CAS  Google Scholar 

  59. Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529.

    Article  CAS  Google Scholar 

  60. Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.

    Article  CAS  Google Scholar 

  61. Shi, B. J.; Zheng, Q.; Jiang, W.; Yan, L.; Wang, X. X.; Liu, H.; Yao, Y.; Li, Z.; Wang, Z. L. A packaged self-powered system with universal connectors based on hybridized nanogenerators. Adv. Mater. 2016, 28, 846–852.

    Article  CAS  Google Scholar 

  62. Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.

    Article  CAS  Google Scholar 

  63. Yi, F.; Wang, J.; Wang, X. F.; Niu, S. M.; Li, S. M.; Liao, Q. L.; Xu, Y. L.; You, Z.; Zhang, Y.; Wang, Z. L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 2016, 10, 6519–6525.

    Article  CAS  Google Scholar 

  64. Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.

    Article  CAS  Google Scholar 

  65. Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W;. Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.

    Article  Google Scholar 

  66. Guo, H. Y.; Yeh, M. H.; Lai, Y. C.; Zi, Y. L.; Wu, C. S.; Wen, Z.; Hu, C. G.; Wang, Z. L. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 2016, 10, 10580–10588.

    Article  CAS  Google Scholar 

  67. Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

    Article  CAS  Google Scholar 

  68. Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037.

    Article  CAS  Google Scholar 

  69. Lin, Z.-H.; Cheng, G.; Wu, W. Z.; Pradel, K. C.; Wang, Z. L. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 2014, 8, 6440–6448.

    Article  CAS  Google Scholar 

  70. Lin, Z.-H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact- electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.

    Article  CAS  Google Scholar 

  71. Yang, Y.; Zhang, H. L.; Liu, R. Y.; Wen, X. N.; Hou, T.-C.; Wang, Z. L. Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 2013, 3, 1563–1568.

    Article  CAS  Google Scholar 

  72. Lin, Z.-H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water-solid surface contact electrification and its use for harvesting liquid-wave1 energy. Angew. Chem., Int. Ed. 2013, 52, 12545–12549.

    Article  CAS  Google Scholar 

  73. Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Cao, S. Y.; Zheng, X.; Si, H. N.; Lu, S. N.; Zhang, Y. Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy 2015, 16, 329–338.

    Article  CAS  Google Scholar 

  74. Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18–25.

    Article  CAS  Google Scholar 

  75. Cheng, G.; Lin, Z.-H.; Du, Z. L.; Wang Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939.

    Article  CAS  Google Scholar 

  76. Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

    Article  CAS  Google Scholar 

  77. Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. H. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.

    Article  CAS  Google Scholar 

  78. Zhao, Z. F.; Pu, X.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10, 1780–1787.

    Article  CAS  Google Scholar 

  79. Hu, W. W.; Wu, W. W.; Zhou, H. M. Wind-blown sand electrification inspired triboelectric energy harvesting based on homogeneous inorganic materials contact: A theoretical study and prediction. Sci. Rep. 2016, 6, 19912.

    Article  CAS  Google Scholar 

  80. Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.

    Article  CAS  Google Scholar 

  81. Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

    Article  CAS  Google Scholar 

  82. Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z.-H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

    Article  CAS  Google Scholar 

  83. Chandrasekhar, A.; Alluri, N. R.; Sarawivanakumar, B.; Selvarajan, S.; Kim, S. J. Human interactive triboelectric nanogenerator as a self-powered smart seat. ACS Appl. Mater. Interfaces 2016, 8, 9692–9699.

    Article  CAS  Google Scholar 

  84. Zhou, T.; Zhang, C.; Han, C. B.; Fan, F. R.; Tang, W.; Wang, Z. L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 2014, 6, 14695–14701.

    Article  CAS  Google Scholar 

  85. Kim, K. N.; Chun, J.; Kim, J. W.; Lee, K. Y.; Park, J. U.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 2015, 9, 6394–6400.

    Article  CAS  Google Scholar 

  86. Meng, X. S.; Wang, Z. L.; Zhu, G. Triboelectric-potential- regulated charge transport through p-n junctions for area-scalable conversion of mechanical energy. Adv. Mater. 2016, 28, 668–676.

    Article  CAS  Google Scholar 

  87. Song, P.; Kuang, S.; Panwar, N.; Yang, G.; Tng, D. J. H.; Tjin, S. C.; Ng, W. J.; Majid, M. B. A.; Zhu, G.; Yong, K.-T. et al. A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 2017, 29, 1605668.

    Article  CAS  Google Scholar 

  88. Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

    Article  CAS  Google Scholar 

  89. Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

    Article  CAS  Google Scholar 

  90. Liang, Q. J.; Zhang, Q.; Yan, X. Q.; Liao, X. Q.; Han, L. H.; Yi, F.; Ma, M. Y.; Zhang, Y. Recyclable and green triboelectric nanogenerator. Adv. Mater. 2017, 29, 1604961.

    Article  CAS  Google Scholar 

  91. Yang, Y.; Zhang, H. L.; Zhong, X. D.; Yi, F.; Yu, R. M.; Zhang, Y.; Wang, Z. L. Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. ACS Appl. Mater. Interfaces 2014, 6, 3680–3688.

    Article  CAS  Google Scholar 

  92. Wang, S. H.; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 2015, 27, 240–248.

    Article  CAS  Google Scholar 

  93. Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  CAS  Google Scholar 

  94. Yang, Y.; Zhou, Y. S.; Zhang, H. L.; Liu, Y.; Lee, S.; Wang, Z. L. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 2013, 25, 6594–6601.

    Article  CAS  Google Scholar 

  95. Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

    Article  CAS  Google Scholar 

  96. Liang, Q. J.; Zhanga, Z.; Yan, X. Q.; Gu, Y. S.; Zhao, Y. L.; Zhang, G. J.; Lu, S. N.; Liao, Q. L.; Zhang, Y. Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 2015, 14, 209–216.

    Article  CAS  Google Scholar 

  97. Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Cao, S. Y.; Lu, S. N.; Zheng, X.; Zhang, Y. Integrated active sensor system for real time vibration monitoring. Sci. Rep. 2015, 5, 16063.

    Article  CAS  Google Scholar 

  98. Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

    Article  CAS  Google Scholar 

  99. Fan, X.; Chen, J.; Yang, J.; Bai, P.; Li, Z. L.; Wang, Z. L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 2015, 9, 4236–4243.

    Article  CAS  Google Scholar 

  100. Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843–3850.

    Article  CAS  Google Scholar 

  101. Yi, F.; Lin, L.; Niu, S. M.; Yang, J.; Wu, W. Z.; Wang, S. H.; Liao, Q. L.; Zhang, Y.; Wang, Z. L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv. Funct. Mater. 2014, 24, 7488–7494.

    Article  CAS  Google Scholar 

  102. Han, C. B.; Zhang, C.; Li, X. H.; Zhang, L. M.; Zhou, T.; Hu, W. G.; Wang, Z. L. Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy 2014, 9, 325–333.

    Article  CAS  Google Scholar 

  103. Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.

    Article  CAS  Google Scholar 

  104. Li, Z. L.; Chen, J.; Yang, J.; Su, Y. J.; Fan, X.; Wu, Y.; Yu, C. W.; Wang, Z. L. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 8, 887–896.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51722203, 51672026, 51527802, 51372020, and 51232001), Beijing Municipal Science & Technology Commission (No. Z161100002116027), and the State Key Laboratory for Advanced Metals and Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingliang Liao or Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Kang, Z., Liao, Q. et al. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 11, 2951–2969 (2018). https://doi.org/10.1007/s12274-018-1997-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1997-9

Keywords

Navigation