Skip to main content
Log in

Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, Prussian blue and its analogues (PBAs) have attracted tremendous attention as cathode materials for sodium-ion batteries because of their good cycling performance, low cost, and environmental friendliness. However, they still suffer from kinetic problems associated with the solid-state diffusion of sodium ions during charge and discharge processes, which leads to low specific capacity and poor rate performances. In this work, novel sodium iron hexacyanoferrate nanospheres with a hierarchical hollow architecture have been fabricated as cathode material for sodium-ion batteries by a facile template method. Due to the unique hollow sphere morphology, sodium iron hexacyanoferrate nanospheres can provide large numbers of active sites and high diffusion dynamics for sodium ions, thus delivering a high specific capacity (142 mAh/g), a superior rate capability, and an excellent cycling stability. Furthermore, the sodium insertion/extraction mechanism has been studied by in situ X-ray diffraction, which provides further insight into the crystal structure change of the sodium iron hexacyanoferrate nanosphere cathode material during charge and discharge processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  3. Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.

    Article  Google Scholar 

  4. Lee, H. W.; Wang, R. Y.; Pasta, M.; Lee, S. W.; Liu, N.; Cui, Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280.

    Article  Google Scholar 

  5. Song, J.; Wang, L.; Lu, Y. H.; Liu, J.; Guo, B. K.; Xiao, P. H.; Lee, J. J.; Yang, X. Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658–2664.

    Article  Google Scholar 

  6. Liu, Q. N.; Hu, Z.; Chen, M. Z.; Gu, Q. F.; Dou, Y. H.; Sun, Z. Q.; Chou, S. L.; Dou, S. X. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 3644–3652.

    Article  Google Scholar 

  7. Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156–160.

    Article  Google Scholar 

  8. Kim, D.; Kang, S. H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 2011, 1, 333–336.

    Article  Google Scholar 

  9. Chen, M. Z.; Chen, L. N.; Hu, Z.; Liu, Q. N.; Zhang, B. W.; Hu, Y. X.; Gu, Q. F.; Wang, J. L.; Wang, L. Z.; Guo, X. D. et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries. Adv. Mater. 2017, 29, 1605535.

    Article  Google Scholar 

  10. Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886–887.

    Article  Google Scholar 

  11. Yue, Y. F.; Binder, A. J.; Guo, B. K.; Zhang, Z. Y.; Qiao, Z. A.; Tian, C. C.; Dai, S. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angew. Chem., Int. Ed. 2014, 53, 3134–3137.

    Article  Google Scholar 

  12. Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546.

    Article  Google Scholar 

  13. Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed 2013, 52, 1964–1967.

    Article  Google Scholar 

  14. You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.

    Article  Google Scholar 

  15. Jiang, Y. Z.; Yu, S. L.; Wang, B. Q.; Li, Y.; Sun, W. P.; Lu, Y. H.; Yan, M.; Song, B.; Dou, S. X. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 2016, 26, 5315–5321.

    Article  Google Scholar 

  16. Wang, R. Y.; Wessells, C. D.; Huggins, R. A.; Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 2013, 13, 5748–5752.

    Article  Google Scholar 

  17. Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007.

    Article  Google Scholar 

  18. Matsuda, T.; Takachi, M.; Moritomo, Y. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 2013, 49, 2750–2752.

    Article  Google Scholar 

  19. Wu, X. Y.; Luo, Y.; Sun, M. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 2015, 13, 117–123.

    Article  Google Scholar 

  20. Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407–411.

    Article  Google Scholar 

  21. Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31, 145–148.

    Article  Google Scholar 

  22. Wang, L.; Song, J.; Qiao, R. M.; Wray, L. A.; Hossain, M. A.; Chuang, Y. D.; Yang, W. L.; Lu, Y. H.; Evans, D.; Lee, J. J. et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548–2554.

    Article  Google Scholar 

  23. Wu, X. Y.; Jian, Z. L.; Li, Z. F.; Ji, X. L. Prussian white analogues as promising cathode for non-aqueous potassiumion batteries. Electrochem. Commun. 2017, 77, 54–57.

    Article  Google Scholar 

  24. You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium

  25. He, G.; Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017, 2, 1122–1127.

    Article  Google Scholar 

  26. Piernas-Munoz, M. J.; Castillo-Martinez, E.; Bondarchuk, O.; Armand, M.; Rojo, T. Higher voltage plateau cubic Prussian white for Na-ion batteries. J. Power Sources 2016, 324, 766–773.

    Article  Google Scholar 

  27. Ren, W. H.; Qin, M. S.; Zhu, Z. X.; Yan, M. Y.; Li, Q.; Zhang, L.; Liu, D. N.; Mai, L. Q. Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett. 2017, 17, 4713–4718.

    Article  Google Scholar 

  28. Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. 2012, 124, 243–245.

    Article  Google Scholar 

  29. Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 11185–11194.

    Article  Google Scholar 

  30. Li, L. L.; Chu, Y.; Liu, Y.; Dong, L. H. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C 2007, 111, 2123–2127.

    Article  Google Scholar 

  31. Li, W. J.; Chou, S. L.; Wang, J. Z.; Kang, Y. M.; Wang, J. L.; Liu, Y.; Gu, Q. F.; Liu, H. K.; Dou, S. X. Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries. Chem. Mater. 2015, 27, 1997–2003.

    Article  Google Scholar 

  32. Yang, Y.; Liu, E. S.; Yan, X. M.; Ma, C. R.; Wen, W.; Liao, X. Z.; Ma, Z. F. Influence of structural imperfection on electrochemical behavior of Prussian blue cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A2117–A2123.

    Article  Google Scholar 

  33. Wu, Q. F.; Wu, G. L.; Wang, L. D.; Hu, W. L.; Wu, H. J. Facile synthesis and optical properties of Prussian blue microcubes and hollow Fe2O3 microboxes. Mat. Sci. Semicon. Proc. 2015, 30, 476–481.

    Article  Google Scholar 

  34. Li, X. N.; Liu, J. Y.; Rykov, A. I.; Han, H. X.; Jin, C. Z.; Liu, X.; Wang, J. H. Excellent photo-Fenton catalysts of Fe-Co Prussian blue analogues and their reaction mechanism study. Appl. Catal. B-Environ. 2015, 179, 196–205.

    Article  Google Scholar 

  35. Desimoni, E.; Brunetti, B. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review. Chemosensors 2015, 3, 70–117.

    Article  Google Scholar 

  36. Haight, S. M.; Schwartz, D. T.; Lilga, M. A. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration. J. Electrochem. Soc. 1999, 146, 1866–1872.

    Article  Google Scholar 

  37. Samain, L.; Gilbert, B.; Grandjean, F.; Long, G. J.; Strivay, D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J. Anal. At. Spectrom. 2013, 28, 524–535.

    Article  Google Scholar 

  38. Xia, L.; McCreery, R. L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. J. Electrochem. Soc. 1999, 146, 3696–3701.

    Article  Google Scholar 

  39. Boclair, J. W.; Braterman, P. S.; Brister, B. D.; Wang, Z. M.; Yarberry, F. Physical and chemical interactions between Mg:Al layered double hydroxide and hexacyanoferrate. J. Solid State Chem. 2001, 161, 249–258.

    Article  Google Scholar 

  40. Takachi, M.; Matsuda, T.; Moritomo, Y. Structural, electronic, and electrochemical properties of LiICo[Fe(CN)6]0.902.9H2O. Jan. J. Appl. Phys. 2013, 52, 044301.

    Article  Google Scholar 

  41. Han, L.; Yu, X. Y.; Lou, X. W. D. Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Adv. Mater 2016, 28, 4601–4605.

    Article  Google Scholar 

  42. Huang, Y. X.; Xie, M.; Zhang, J. T.; Wang, Z. H.; Jiang, Y.; Xiao, G. H.; Li, S. J.; Li, L.; Wu, F.; Chen, R. J. et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy 2017, 39, 273–283.

    Article  Google Scholar 

  43. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  44. Chen, R. J.; Huang, Y. X.; Xie, M.; Wang, Z. H.; Ye, Y. S.; Li, L.; Wu, F. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 31669–31676.

    Article  Google Scholar 

  45. Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301–6306.

    Article  Google Scholar 

  46. Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5-/TirO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.

    Article  Google Scholar 

  47. Chen, R. J.; Huang, Y. X.; Xie, M.; Zhang, Q. Y.; Zhang, X. X.; Li, L.; Wu, F. Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 16078–16086.

    Article  Google Scholar 

  48. Mizuno, Y.; Okubo, M.; Asakura, D.; Saito, T.; Hosono, E.; Saito, Y.; Oh-ishi, K.; Kudo, T.; Zhou, H. S. Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte. Electrochim. Acta 2012, 63, 139–145.

    Article  Google Scholar 

  49. Fu, H. Y.; Liu, C. F.; Zhang, C. K.; Ma, W. D.; Wang, K.; Li, Z. Y.; Lu, X. M.; Cao, G. Z. Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. J. Mater. Chem. A 2017, 5, 9604–9610.

    Article  Google Scholar 

  50. Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

    Article  Google Scholar 

  51. Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281–289.

    Article  Google Scholar 

  52. Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

    Article  Google Scholar 

  53. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

    Article  Google Scholar 

  54. Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

    Article  Google Scholar 

  55. Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Ji, X.; Miao, L.; Yuan, L. X.; Hu, X. L.; Huang, Y. H. Sodium storage in Na-rich Na,FeFe(CN)6 nanocubes. Nano Energy 2015, 12, 386–393.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Renewable Energy Agency (ARENA) project (ARENA 2014/RND106) and the Australian Research Council (ARC) through the ARC Discovery Project (DP170100436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiu Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Liu, H., Su, D. et al. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 11, 3979–3990 (2018). https://doi.org/10.1007/s12274-018-1979-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1979-y

Keywords

Navigation