Skip to main content
Log in

Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fluorescent silicon (Si) nanoparticles (SiNPs) hold great promise for innumerable biological and biomedical applications owing to their unique optical properties and negligible toxicity. In this article, we present a new traditional Chinese medicine (TCM) molecule-assisted chemical synthetic strategy, suitable for the production of multifunctional small-sized (diameter: ~ 3.7 nm) SiNPs in a facile and rapid (~ 10 min) manner. Of particular significance, the resultant SiNPs simultaneously exhibited robust and stable fluorescence (photoluminescence quantum yield (PLQY): ~ 15%), as well as intrinsic anti-cancer efficacy with excellent selectivity toward cancer cells. Taking advantage of these unique merits, we further employed these novel fluorescent anti-cancer SiNPs (AC-SiNPs) for the fluorescence tracking and treatment of tumors, demonstrating long-term (~ 18 days) inhibition of tumor growth in tumor-bearing mice. Consequently, we believe this new TCM-assisted chemical synthetic method is highly attractive for designing silicon nanostructures featuring multiple functionalities, and we suggest these AC-SiNPs as novel promising tools for providing visual evidence of TCM-based cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheung, F. TCM: Made in China. Nature 2011, 480, S82–S83.

    Article  Google Scholar 

  2. Stone, R. Lifting the veil on traditional Chinese medicine. Science 2008, 319, 709–710.

    Article  Google Scholar 

  3. Tsou, L. K.; Lara-Tejero, M.; RoseFigura, J.; Zhang, Z. J.; Wang, Y. C.; Yount, J. S.; Lefebre, M.; Dossa, P. D.; Kato, J.; Guan, F. et al. Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. J. Am. Chem. Soc. 2016, 138, 2209–2218.

    Article  Google Scholar 

  4. Mann, J. Natural products in cancer chemotherapy: Past, present and future. Nat. Rev. Cancer 2002, 2, 143–148.

    Article  Google Scholar 

  5. Koehn, F. E.; Carter, G. T. The evolving role of natural products in drug discovery. Nat. Drug Discov. 2005, 4, 206–220.

    Article  Google Scholar 

  6. Harvey, A. L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901.

    Article  Google Scholar 

  7. Raj, L.; Ide, T.; Gurkar, A. U.; Foley, M.; Schenone, M.; Li, X. Y.; Tolliday, N. J.; Golub, T. R.; Carr, S. A.; Shamji, A. F. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011, 475, 231–234.

    Article  Google Scholar 

  8. Gorrini, C.; Harris, I. S.; Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947.

    Article  Google Scholar 

  9. Ostrovsky, S.; Kazimirsky, G.; Gedanken, A.; Brodie, C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009, 2, 882–890.

    Article  Google Scholar 

  10. Kawagishi, H.; Finkel, T. Unraveling the truth about antioxidants: ROS and disease: Finding the right balance. Nat. Med. 2014, 20, 711–713.

    Article  Google Scholar 

  11. Wang, X.; Thormas, B.; Sachdeva, R.; Arterburn, L.; Frye, L; Hatcher, P. G.; Cornwell, D. G.; Ma, J. Mechanism of arylating quinone toxicity involving michael adduct formation and induction of endoplasmic reticulum stress. Proc. Natl. Acad. Sci. USA 2006, 103, 3604–3609.

    Article  Google Scholar 

  12. Hillard, E. A.; de Abreu, F. C.; Ferreira, D. C. M.; Jaouen, G.; Goulart, M. O. F.; Amatore, C. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chem. Commun. 2008, 2612–2628.

    Google Scholar 

  13. Aziz, M. H.; Dreckschmidt, N. E.; Verma, A. K. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res. 2008, 68, 9024–9032.

    Article  Google Scholar 

  14. Burdick, A. D.; Davis, J. W.; Liu, K. J.; Hudson, L. G.; Shi, H. L.; Monske, M. L.; Burchiei, S. W. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res. 2003, 63, 7825–7833.

    Google Scholar 

  15. Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

    Article  Google Scholar 

  16. Chen, H. W.; Zou, P.; Connarn, J.; Paholak, H.; Sun, D. X. Intracellular dissociation of a polymer coating from nanoparticles. Nano Res. 2012, 5, 815–825.

    Article  Google Scholar 

  17. Mitra, S.; Sasmal, H. S.; Kunda, T.; Kandambeth, S.; Illath, K.; Diaz, D. D.; Banerjee, R. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 2017, 139, 4513–4520.

    Article  Google Scholar 

  18. Zheng, F. F.; Zhang, P. H.; Xi, Y.; Chen, J. J.; Li, J. J.; Zhu, J. J. Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug delivery and real-time monitoring of drug release. Anal. Chem. 2015, 87, 11739–11745.

    Article  Google Scholar 

  19. Aizil, G.; Waiskopf, N.; Agbaria, M.; Levi-Kalisman, Y.; Banin, U.; Golomb, G. Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue. ACS Nano 2017, 11, 3038–3051.

    Article  Google Scholar 

  20. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

    Article  Google Scholar 

  21. He, Y.; Zhong, Y. L.; Peng, F.; Wei, X. P.; Su, Y. Y.; Lu, Y. M.; Su, S.; Gu, W.; Liao, L. S.; Lee, S. T. One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 2011, 133, 14192–14195.

    Article  Google Scholar 

  22. Zhong, Y. L.; Peng, F.; Wei, X. P.; Zhou, Y. F.; Wang, J.; Jiang, X. X.; Su, Y. Y.; Su, S.; Lee, S. T.; He, Y. Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem., Int. Ed. 2012, 51, 8485–8489.

    Article  Google Scholar 

  23. Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

    Article  Google Scholar 

  24. Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726–14732.

    Article  Google Scholar 

  25. Zhong, Y. L.; Sun, X. T.; Wang, S. Y.; Peng, F.; Bao, F.; Su, Y. Y.; Li, Y. Y.; Lee, S. T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015, 9, 5958–5967.

    Article  Google Scholar 

  26. Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336.

    Article  Google Scholar 

  27. Gu, L.; Hall, D. J.; Qin, Z. T.; Anglin, E.; Joo, J.; Mooney, D. J.; Howell, S. B.; Sailor, M. J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 2013, 4, 2326.

    Article  Google Scholar 

  28. Xing, R.; Li, K. L.; Zhou, Y. F.; Su, Y. Y.; Yan, S. Q.; Zhang, K. L.; Wu, S. C.; Sima, Y. H.; Zhang, K. Q.; He, Y. et al. Impact of fluorescent silicon nanoparticles on circulating hemolymph and hematopoiesis in an invertebrate model organism. Chemosphere 2016, 159, 628–637.

    Article  Google Scholar 

  29. Zhou, Y. F.; Zhang, Y.; Zhong, Y. L.; Fu, R.; Wu, S. C.; Wang, Q.; Wang, H. Y.; Su, Y. Y.; Zhang, H. M.; He, Y. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis Elegans. Nano Res. 2017, in press, DOI: 10.1007/s12274-017-1677-1.

    Google Scholar 

  30. Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancertargeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768–2780.

    Article  Google Scholar 

  31. Phillips, E.; Penate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Möhan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigain, H.; Schöder, H.; Strauss, W. H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Trans. Med. 2014, 6, 260ra149.

    Article  Google Scholar 

  32. Jokerst, J.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060.

    Article  Google Scholar 

  33. Shiohara, A.; Hanada, S.; Prabakar, S.; Fujioka, K.; Lim, T. H.; Yamamoto, K.; Northcote, P.; Tilley, R. D. Chemical reactions on surface molecules attached to silicon quantum dots. J. Am. Chem. Soc. 2010, 132, 248–253.

    Article  Google Scholar 

  34. Atkins, T. M.; Thibert, A.; Larsen, D. S.; Dey, S.; Browning, N. D.; Kauzlarich, S. M. Femtosecond ligand/core dynamics of microwave-assisted synthesized silicon quantum dots in aqueous solution. J. Am. Chem. Soc. 2011, 133, 20664–20667.

    Article  Google Scholar 

  35. Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 2013, 7, 2676–2685.

    Article  Google Scholar 

  36. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

    Article  Google Scholar 

  37. Qian, C. X.; Sun, W.; Wang, L. W.; Chen, C. L.; Liao, K.; Wang, W. D.; Jia, J.; Hatton, B. D.; Casillas, G.; Kurylowicz, M. et al. Non-wettable, oxidation-stable, brightly luminescent, perfluorodecylcapped silicon nanocrystal film. J. Am. Chem. Soc. 2014, 136, 15849–15852.

    Article  Google Scholar 

  38. Kim, T.; Fu, X.; Warther, D.; Sailor, M. J. Size-controlled Pd nanoparticle catalysts prepared by galvanic displacement into a porous Si-iron oxide nanoparticle host. ACS Nano 2017, 11, 2773–2784.

    Article  Google Scholar 

  39. Zhou, T. L.; Anderson, R. T.; Li, H. S.; Bell, J.; Yang, Y. G.; Gorman, B. P.; Pylypenko, S.; Lusk, M. T.; Sellinger, A. Bandgap tuning of silicon quantum dots by surface functionalization with conjugated organic groups. Nano Lett. 2015, 15, 3657–3663.

    Article  Google Scholar 

  40. Cheng, X. Y.; Hinde, E.; Owen, D. M.; Lowe, S. B.; Reece, P. J.; Gaus, K.; Gooding, J. J. Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: Application to silicon quantum dots (SiQDs). Adv. Mater. 2015, 27, 6144–6150.

    Article  Google Scholar 

  41. Liu, X. K.; Zhang, Y. H.; Yu, T.; Qiao, X. S.; Gresback, R.; Pi, X. D.; Yang, D. R. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Part. Part. Syst. Charact. 2016, 33, 44–52.

    Article  Google Scholar 

  42. Sangghaleh, F.; Sychugov, I.; Yang, Z. Y.; Veinot, J. G. C.; Linnros, J. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano 2015, 9, 7097–7104.

    Article  Google Scholar 

  43. Erogbogbo, F.; Yong, K. T.; Roy, I.; Xu, G. X.; Prasad, P. N.; Swihart, M. T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2008, 2, 873–878.

    Article  Google Scholar 

  44. Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S. T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034.

    Article  Google Scholar 

  45. Song, C. X.; Zhong, Y. L.; Jiang, X. X.; Peng, F.; Lu, Y. M.; Ji, X. Y.; Su, Y. Y.; He, Y. Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 2015, 87, 6718–6723.

    Article  Google Scholar 

  46. Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 2016, 88, 9235–9242.

    Article  Google Scholar 

  47. Tahover, E.; Patil, Y. P.; Gabizon, A. A. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: Focus on liposomes. Anti-Cancer Drugs 2015, 26, 241–258.

    Article  Google Scholar 

  48. Li, X. R.; Yang, X. C.; Lin, Z. Q.; Wang, D.; Mei, D.; He, B.; Wang, X. Y.; Wang, X. Q.; Zhang, Q.; Gao, W. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur. J. Pharm. Sci. 2015, 76, 95–101.

    Article  Google Scholar 

  49. Nitiss, K. C.; Nitiss, J. L. Twisting and ironing: Doxorubicin cardiotoxicity by mitochondrial DNA damage. Clin. Cancer Res. 2014, 20, 4737–4739.

    Article  Google Scholar 

  50. He, Y.; Sai, L. M.; Lu, H. T.; Hu, M.; Lai, W. Y.; Fan, Q. L.; Wang, L. H.; Huang, W. Microwave-assisted synthesis of waterdispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem. Mater. 2007, 19, 359–365.

    Article  Google Scholar 

  51. He, Y.; Lu, H. T.; Sai, L. M.; Su, Y. Y.; Hu. M.; Fan, C. H.; Huang, W.; Wang, L. H. Microwave synthesis of waterdispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 2008, 20, 3416–3421.

    Article  Google Scholar 

  52. Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; van Tendeloo, G.; Moshchalkov, V. V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 2008, 3, 174–178.

    Article  Google Scholar 

  53. Li, Z. F.; Ruckenstein, E. Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 2004, 4, 1463–1467.

    Article  Google Scholar 

  54. Park, J. Y.; Choi, E. S.; Baek, M. J.; Lee, G. H. Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid. Mater. Lett. 2009, 63, 379–381.

    Article  Google Scholar 

  55. Graf, C.; Gao, Q.; Schütz, I.; Noufele, C. N.; Ruan, W.; Posselt, U.; Korotianskiy, E.; Nordmeyer, D.; Rancan, F.; Hadam, S. et al. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 2012, 28, 7598–7613.

    Article  Google Scholar 

  56. George, P.; Raina, A. K.; Nunomura, A.; Wataya, T.; Sayre, L. M.; Smith, M. A. How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic. Biol. Med. 2000, 28, 831–834.

    Google Scholar 

  57. Dalle-donne, I.; Rossi, R.; Milzani, A.; Di Simplicid, P.; Colombo, R. The actin cytoskeleton response to oxidants: From small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic. Biol. Med. 2001, 31, 1624–1632.

    Article  Google Scholar 

  58. Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.

    Google Scholar 

  59. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Shuit-Tong Lee (Soochow University, China) for general help and valuable suggestions. We appreciate financial support from the National Basic Research Program of China (No. 2013CB934400), the National Natural Science Foundation of China (Nos. 61361160412, 31400860, 21575096, and 21605109), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), 111 Project as well as Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Guo, D., Song, B. et al. Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles. Nano Res. 11, 5629–5641 (2018). https://doi.org/10.1007/s12274-018-1976-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1976-1

Keywords

Navigation