Skip to main content
Log in

Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Finite-sized graphene sheets, such as graphene nanoislands (GNIs), are promising candidates for practical applications in graphene-based nanoelectronics. GNIs with well-defined zigzag edges are predicted to have spin-polarized edge-states similar to those of zigzag-edged graphene nanoribbons, which can achieve graphene spintronics. However, it has been reported that GNIs on metal substrates have no edge states because of interactions with the substrate.We used a combination of scanning tunneling microscopy, spectroscopy, and density functional theory calculations to demonstrate that the edge states of GNIs on an Ir substrate can be recovered by intercalating a layer of Si atoms between the GNIs and the substrate. We also found that the edge states gradually shift to the Fermi level with increasing island size. This work provides a method to investigate spin-polarized edge states in high-quality graphene nanostructures on a metal substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Meunier, V.; Souza Filho, A. G.; Barros, E. B.; Dresselhaus, M. S. Physical properties of low-dimensional sp2-based carbon nanostructures. Rev. Mod. Phys. 2016, 88, 025005.

    Article  Google Scholar 

  2. Dienel, T.; Kawai, S.; Söde, H.; Feng, X. L.; Müllen, K.; Ruffieux, P.; Fasel, R.; Gröning, O. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 2015, 15, 5185–5190.

    Article  Google Scholar 

  3. Joung, D.; Nemilentsau, A.; Agarwal, K.; Dai, C. H.; Liu, C.; Su, Q.; Li, J.; Low, T.; Koester, S. J.; Cho, J. H. Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement. Nano Lett. 2017, 17, 1987–1994.

    Article  Google Scholar 

  4. Wang, W. L.; Meng, S.; Kaxiras, E. Graphene nanoflakes with large spin. Nano Lett. 2008, 8, 241–245.

    Article  Google Scholar 

  5. Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  Google Scholar 

  6. Cui, P.; Zhang, Q.; Zhu, H. B.; Li, X. X.; Wang, W. Y.; Li, Q. X.; Zeng, C. G.; Zhang, Z. Y. Carbon tetragons as definitive spin switches in narrow zigzag graphene nanoribbons. Phys. Rev. Lett. 2016, 116, 026802.

    Article  Google Scholar 

  7. Wimmer, M.; Adagideli, İ.; Berber, S.; Tománek, D.; Richter, K. Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection. Phys. Rev. Lett. 2008, 100, 177207.

    Article  Google Scholar 

  8. Topsakal, M.; Sevinçli, H.; Ciraci, S. Spin confinement in the superlattices of graphene ribbons. Appl. Phys. Lett. 2008, 92, 173118.

    Article  Google Scholar 

  9. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

    Article  Google Scholar 

  10. Tao, C. G.; Jiao, L. Y.; Yazyev, O. V.; Chen, Y. C.; Feng, J. J.; Zhang, X. W.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616–620.

    Article  Google Scholar 

  11. Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686–3699.

    Article  Google Scholar 

  12. Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011, 133, 15221–15223.

    Article  Google Scholar 

  13. Wang, W. L.; Yazyev, O. V.; Meng, S.; Kaxiras, E. Topological frustration in graphene nanoflakes: Magnetic order and spin logic devices. Phys. Rev. Lett. 2009, 102, 157201.

    Article  Google Scholar 

  14. Fernández-Rossier, J.; Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.

    Article  Google Scholar 

  15. Heiskanen, H. P.; Manninen, M.; Akola, J. Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level. New J. Phys. 2008, 10, 103015.

    Article  Google Scholar 

  16. Yoon, Y.; Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 2007, 91, 073103.

    Article  Google Scholar 

  17. Feng, X. F.; Wu, J.; Bell, A. T.; Salmeron, M. An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. J. Phys. Chem. C 2015, 119, 7124–7129.

    Article  Google Scholar 

  18. Coraux, J.; N’Diaye, A. T.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; Meyer zu Heringdorf, F.-J.; van Gastel, R.; Poelsema, B.; Michely, T. Growth of graphene on Ir(111). New J. Phys. 2009, 11, 023006.

    Article  Google Scholar 

  19. Phark, S. H.; Borme, J.; Vanegas, A. L.; Corbetta, M.; Sander, D.; Kirschner, J. Direct observation of electron confinement in epitaxial graphene nanoislands. ACS Nano 2011, 5, 8162–8166.

    Article  Google Scholar 

  20. Li, Y.; Subramaniam, D.; Atodiresei, N.; Lazić, P.; Caciuc, V.; Pauly, C.; Georgi, A.; Busse, C.; Liebmann, M.; Blügel, S. et al. Absence of edge states in covalently bonded zigzag edges of graphene on Ir(111). Adv. Mater. 2013, 25, 1967–1972.

    Article  Google Scholar 

  21. Lu, J.; Yeo, P. S.; Gan, C. K.; Wu, P.; Loh, K. P. Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 2011, 6, 247–252.

    Article  Google Scholar 

  22. Wang, S. Y.; Talirz, L.; Pignedoli, C. A.; Feng, X. L.; Müllen, K.; Fasel, R.; Ruffieux, P. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 2016, 7, 11507.

    Article  Google Scholar 

  23. Leicht, P.; Zielke, L.; Bouvron, S.; Moroni, R.; Voloshina, E.; Hammerschmidt, L.; Dedkov, Y. S.; Fonin, M. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold. ACS Nano 2014, 8, 3735–3742.

    Article  Google Scholar 

  24. Deniz, O.; Sánchez-Sánchez, C.; Dumslaff, T.; Feng, X. L.; Narita, A.; Müllen, K.; Kharche, N.; Meunier, V.; Fasel, R.; Ruffieux, P. Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Lett. 2017, 17, 2197–2203.

    Article  Google Scholar 

  25. Meng, L.; Wu, R. T.; Zhou, H. T.; Li, G.; Zhang, Y.; Li, L. F.; Wang, Y. L.; Gao, H. J. Silicon intercalation at the interface of graphene and Ir(111). Appl. Phys. Lett. 2012, 100, 083101.

    Article  Google Scholar 

  26. Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru (0001). Appl. Phys. Lett. 2012, 100, 093101.

    Article  Google Scholar 

  27. Meng, L.; Wu, R. T.; Zhang, L. Z.; Li, L. F.; Du, S. X.; Wang, Y. L.; Gao, H. J. Multi-oriented moiré superstructures of graphene on Ir(111): Experimental observations and theoretical models. J. Phys.: Condens. Matter 2012, 24, 314214.

    Google Scholar 

  28. N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two- dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

    Article  Google Scholar 

  29. Coraux, J.; N‘Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

    Article  Google Scholar 

  30. Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.

    Article  Google Scholar 

  31. Kim, H. W.; Ku, J.; Ko, W.; Jeon, I.; Kwon, H.; Ryu, S.; Kahng, S. J.; Lee, S. H.; Hwang, S. W.; Suh, H. Strong interaction between graphene edge and metal revealed by scanning tunneling microscopy. Carbon 2014, 78, 190–195.

    Article  Google Scholar 

  32. Li, Y. Y.; Chen, M. X.; Weinert, M.; Li, L. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons. Nat. Commun. 2014, 5, 4311.

    Article  Google Scholar 

  33. Hämäläinen, S. K.; Sun, Z. X.; Boneschanscher, M. P.; Uppstu, A.; Ijäs, M.; Harju, A.; Vanmaekelbergh, D.; Liljeroth, P. Quantum- confined electronic states in atomically well-defined graphene nanostructures. Phys. Rev. Lett. 2011, 107, 236803.

    Article  Google Scholar 

  34. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  36. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  37. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

    Article  Google Scholar 

  38. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research & Development Projects of China (No. 2016YFA0202300), National Basic Research Program of China (Nos. 2013-CBA01600 and 2015CB921103), National Natural Science Foundation of China (Nos. 61390501, 51325204, 51210003, and 61622116), and the CAS Pioneer Hundred Talents Program. Work at Vanderbilt is partially supported by the Department of Energy grant DE- FG02-09ER46554 and by the McMinn Endowment. Y. Y. Z and S. T. P acknowledge the National Energy Re-search Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XS-EDE), which is supported by National Science Foundation Grant ACI-1053575. A portion of the research was performed in CAS key laboratory of Vacuum Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixuan Du or Hong-Jun Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Que, Y., Tao, L. et al. Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation. Nano Res. 11, 3722–3729 (2018). https://doi.org/10.1007/s12274-017-1940-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1940-5

Keywords

Navigation