Skip to main content
Log in

Reversible hydrogels with tunable mechanical properties for optically controlling cell migration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synthetic hydrogels are widely used as biomimetic in vitro model systems to understand how cells respond to complex microenvironments. The mechanical properties of hydrogels are deterministic for many cellular behaviors, including cell migration, spreading, and differentiation. However, it remains a major challenge to engineer hydrogels that recapture the dynamic mechanical properties of native extracellular matrices. Here, we provide a new hydrogel platform with spatiotemporally tunable mechanical properties to assay and define cellular behaviors under light. The change in the mechanical properties of the hydrogel is effected by a photo-induced switch of the cross-linker fluorescent protein, Dronpa145N, between the tetrameric and monomeric states, which causes minimal changes to the chemical properties of the hydrogel. The mechanical properties can be rapidly and reversibly tuned for multiple cycles using visible light, as confirmed by rheological measurements and atomic force microscopybased nano-indentation. We further demonstrated real-time and reversible modulation of cell migration behaviors on the hydrogels through photo-induced stiffness switching, with minimal invasion to the cultured cells. Hydrogels with a programmable mechanical history and a spatially defined mechanical hierarchy might serve as an ideal model system to better understand complex cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopeček, J.; Yang, J. Y. Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem., Int. Ed. 2012, 51, 7396–7417.

    Article  Google Scholar 

  2. Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.

    Article  Google Scholar 

  3. Wang, H. M.; Shi, Y.; Wang, L.; Yang, Z. M. Recombinant proteins as cross-linkers for hydrogelations. Chem. Soc. Rev. 2013, 42, 891–901.

    Article  Google Scholar 

  4. Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492.

    Article  Google Scholar 

  5. Lutolf, M. P.; Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55.

    Article  Google Scholar 

  6. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360.

    Article  Google Scholar 

  7. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128.

    Article  Google Scholar 

  8. Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329.

    Article  Google Scholar 

  9. Lai, W. F.; He, Z. D. Design and fabrication of hydrogelbased nanoparticulate systems for in vivo drug delivery. J. Control. Release 2016, 243, 269–282.

    Article  Google Scholar 

  10. Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165–13307.

    Article  Google Scholar 

  11. Caliari, S. R.; Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 2016, 13, 405–414.

    Article  Google Scholar 

  12. Wang, H. Y.; Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 3717–3736.

    Article  Google Scholar 

  13. Cushing, M. C.; Anseth, K. S. Materials science. Hydrogel cell cultures. Science 2007, 316, 1133–1134.

    Google Scholar 

  14. Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689.

    Article  Google Scholar 

  15. Guilak, F.; Cohen, D. M.; Estes, B. T.; Gimble, J. M.; Liedtke, W.; Chen, C. S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5, 17–26.

    Article  Google Scholar 

  16. Das, R. K.; Gocheva, V.; Hammink, R.; Zouani, O. F.; Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 2016, 15, 318–325.

    Article  Google Scholar 

  17. Huebsch, N.; Lippens, E.; Lee, K.; Mehta, M.; Koshy, S. T.; Darnell, M. C.; Desai, R. M.; Madl, C. M.; Xu, M.; Zhao, X. H. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 2015, 14, 1269–1277.

    Article  Google Scholar 

  18. Murphy, W. L.; McDevitt, T. C.; Engler, A. J. Materials as stem cell regulators. Nat. Mater. 2014, 13, 547–557.

    Article  Google Scholar 

  19. Yang, C.; Tibbitt, M. W.; Basta, L.; Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 2014, 13, 645–652.

    Article  Google Scholar 

  20. Lutolf, M. P.; Gilbert, P. M.; Blau, H. M. Designing materials to direct stem-cell fate. Nature 2009, 462, 433–441.

    Article  Google Scholar 

  21. Gilbert, P. M.; Havenstrite, K. L.; Magnusson, K. E. G.; Sacco, A.; Leonardi, N. A.; Kraft, P.; Nguyen, N. K.; Thrun, S.; Lutolf, M. P.; Blau, H. M. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010, 329, 1078–1081.

    Article  Google Scholar 

  22. Guvendiren, M.; Burdick, J. A. Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics. Nat. Commun. 2012, 3, 792.

    Article  Google Scholar 

  23. Rosales, A. M.; Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 2016, 1, 15012.

    Article  Google Scholar 

  24. Murphy, W. L.; Dillmore, W. S.; Modica, J.; Mrksich, M. Dynamic hydrogels: Translating a protein conformational change into macroscopic motion. Angew. Chem., Int. Ed. 2007, 46, 3066–3069.

    Article  Google Scholar 

  25. Yuan, W. W.; Yang, J. Y.; Kopečková, P.; Kopeček, J. Smart hydrogels containing adenylate kinase: Translating substrate recognition into macroscopic motion. J. Am. Chem. Soc. 2008, 130, 15760–15761.

    Article  Google Scholar 

  26. Patterson, J.; Hubbell, J. A. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 2010, 31, 7836–7845.

    Article  Google Scholar 

  27. Abdeen, A. A.; Lee, J.; Bharadwaj, N. A.; Ewoldt, R. H.; Kilian, K. A. Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv. Healthc. Mater. 2016, 5, 2536–2544.

    Article  Google Scholar 

  28. Yoshikawa, H. Y.; Rossetti, F. F.; Kaufmann, S.; Kaindl, T.; Madsen, J.; Engel, U.; Lewis, A. L.; Armes, S. P.; Tanaka, M. Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J. Am. Chem. Soc. 2011, 133, 1367–1374.

    Article  Google Scholar 

  29. Davis, K. A.; Burke, K. A.; Mather, P. T.; Henderson, J. H. Dynamic cell behavior on shape memory polymer substrates. Biomaterials 2011, 32, 2285–2293.

    Article  Google Scholar 

  30. Gillette, B. M.; Jensen, J. A.; Wang, M. X.; Tchao, J.; Sia, S. K. Dynamic hydrogels: Switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv. Mater. 2010, 22, 686–691.

    Article  Google Scholar 

  31. Stowers, R. S.; Allen, S. C.; Suggs, L. J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl. Acad. Sci. USA 2015, 112, 1953–1958.

    Article  Google Scholar 

  32. Shih, H.; Lin, C.-C. Tuning stiffness of cell-laden hydrogel via host-guest interactions. J. Mater. Chem. B 2016, 4, 4969–4974.

    Article  Google Scholar 

  33. Burdick, J. A.; Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 2012, 3, 1269.

    Article  Google Scholar 

  34. Gu, Z.; Tang, Y. Enzyme-assisted photolithography for spatial functionalization of hydrogels. Lab Chip 2010, 10, 1946–1951.

    Article  Google Scholar 

  35. Rosales, A. M.; Mabry, K. M.; Nehls, E. M.; Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 2015, 16, 798–806.

    Article  Google Scholar 

  36. Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324, 59–63.

    Article  Google Scholar 

  37. DeForest, C. A.; Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 2011, 3, 925–931.

    Article  Google Scholar 

  38. Rosales, A. M.; Vega, S. L.; DelRio, F. W.; Burdick, J. A.; Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem., Int. Ed. 2017, 56, 12132–12136.

    Article  Google Scholar 

  39. Zhang, X. L.; Dong, C. M.; Huang, W. Y.; Wang, H. M.; Wang, L.; Ding, D.; Zhou, H.; Long, J. F.; Wang, T. L.; Yang, Z. M. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation. Nanoscale 2015, 7, 16666–16670.

    Article  Google Scholar 

  40. Wang, R.; Yang, Z. G.; Luo, J. R.; Hsing, I. M.; Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl. Acad. Sci. USA 2017, 114, 5912–5917.

    Article  Google Scholar 

  41. Zhou, X. X.; Chung, H. K.; Lam, A. J.; Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 2012, 338, 810–814.

    Article  Google Scholar 

  42. Warren, M. M.; Kaucikas, M.; Fitzpatrick, A.; Champion, P.; Timothy, S. J.; van Thor, J. J. Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat. Commun. 2013, 4, 1461.

    Article  Google Scholar 

  43. Phelps, E. A.; Enemchukwu, N. O.; Fiore, V. F.; Sy, J. C.; Murthy, N.; Sulchek, T. A.; Barker, T. H.; Garcia, A. J. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 2012, 24, 64–70.

    Article  Google Scholar 

  44. Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z. B.; Messersmith, P. B.; Holten-Andersen, N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 2015, 14, 1210–1216.

    Article  Google Scholar 

  45. Justus, C. R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L. V. In vitro cell migration and invasion assays. J. Vis. Exp. 2014, e51046.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. W. Meng for his initial experiments on this project. This work is funded by the National Natural Science Foundation of China (Nos. 21522402, 21474003, 91427304, 11372279, 11572285, 11674153, 11374148, and 11334004), the Fundamental Research Funds for the Central Universities (Nos. 020414380070 and 020414380058), the National Basic Research Program of China (Nos. 2012CB921801 and 2013CB834100) and the National High-tech R&D Program of China (No. 2015AA020941).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang, Wen-Bin Zhang or Yi Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Huang, W., Wu, WH. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 5556–5565 (2018). https://doi.org/10.1007/s12274-017-1890-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1890-y

Keywords

Navigation