Skip to main content
Log in

Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this article, highly [010]-oriented self-assembled LiCoPO4/C nanoflakes were prepared through simple and facile solution-phase strategies at low temperature and ambient pressure. The formation of 5-hydroxylmethylfurfural and levoglucosan via the dehydration of glucose during the reaction played a key role in mediating the morphology and structure of the resulting products. LiCoPO4 highly oriented along the (010)-facets exposed Li+ ion transport channels, facilitating ultrafast lithium ion transportation. In turn, the unique assembled mesoporous structure and the flake-like morphology of the prepared products benefit lithium ion batteries constructed using two-dimensional (2D) LiCoPO4/C nanoflakes self-assembles as cathodes and commercial Li4Ti5O12 as anodes. The tested batteries provide high capacities of 154.6 mA·h·g−1 at 0.1 C (based on the LiCoPO4 weight of 1 C = 167 mA·h·g−1) and stable cycling with 93.1% capacity retention after 100 cycles, which is outstanding compared to other recently developed LiCoPO4 cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodenough, J. B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  2. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  3. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  4. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  5. Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

    Article  Google Scholar 

  6. He, X.; Wang, J.; Kloepsch, R.; Krueger, S.; Jia, H. P.; Liu, H. D.; Vortmann, B.; Li, J. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res. 2014, 7, 110–118.

    Article  Google Scholar 

  7. Lee, M.-J.; Lho, E.; Oh, P.; Son, Y.; Cho, J. Simultaneous surface modification method for 0.4Li2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries: Acid treatment and LiCoPO4 coating. Nano Res., in press, https://doi.org/10.1007/s12274-017-1662-8.

  8. Krederlll, K. J.; Manthiram, A. Vanadium-substituted LiCoPO4 core with a monolithic LiFePO4 shell for high-voltage lithium-ion batteries. ACS Energy Lett. 2017, 2, 64–69.

    Article  Google Scholar 

  9. Zhou, A. J.; Dai, X. Y.; Lu, Y. T.; Wang, Q. J.; Fu, M. S.; Li, J. Z. Enhanced interfacial kinetics and high-voltage/high-rate performance of LiCoO2 cathode by controlled sputter-coating with a nanoscale Li4Ti5O12 ionic conductor. ACS Appl. Mater. Interfaces 2016, 8, 34123–34131.

    Article  Google Scholar 

  10. Hao, J. M.; Liu, H. P.; Ji, Y. P.; Bi, S. F. Synthesis and electrochemical performance of Sn-doped LiNi0.5Mn1.5O4 cathode material for high-voltage lithium-ion batteries. Sci. China Mater. 2017, 60, 315–323.

    Article  Google Scholar 

  11. Ludwig, J.; Marino, C.; Haering, D.; Stinner, C.; Gasteiger, H. A.; Nilges, T. Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries. J. Power Sources 2017, 342, 214–223.

    Article  Google Scholar 

  12. Boulineau, A.; Gutel, T. Revealing electrochemically induced antisite defects in LiCoPO4: Evolution upon cycling. Chem. Mater. 2015, 27, 802–807.

    Article  Google Scholar 

  13. Fang, L.; Zhang, H. J.; Zhang, Y.; Liu, L.; Wang, Y. Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. J. Power Sources 2016, 312, 101–108.

    Article  Google Scholar 

  14. Bramnik, N. N.; Bramnik, K. G.; Buhrmester, T.; Baehtz, C.; Ehrenberg, H.; Fuess, H. Electrochemical and structural study of LiCoPO4-based electrodes. J. Solid State Electr. 2004, 8, 558–564.

    Article  Google Scholar 

  15. Örnek, A. An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: Nickel oxide surface modification with excellent core–shell principle. J. Power Sources 2017, 356, 1–11.

    Article  Google Scholar 

  16. Kosova, N. V.; Podgornova, O. A.; Devyatkina, E. T.; Podugolnikov, V. R.; Petrov, S. A. Effect of Fe2+ substitution on the structure and electrochemistry of LiCoPO4 prepared by mechanochemically assisted carbothermal reduction. J. Mater. Chem. A 2014, 2, 20697–20705.

    Article  Google Scholar 

  17. West, W. C.; Whitacre, J. F.; Ratnakumar, B. V. Radio frequency magnetron-sputtered LiCoPO4 cathodes for 4.8 V thin-film batteries. J. Electrochem. Soc. 2003, 150, A1660–A1666.

    Article  Google Scholar 

  18. Lloris, J. M.; Vicente, C. P.; Tirado, J. L. Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem. Solid-State Lett. 2002, 5, A234–A237.

    Article  Google Scholar 

  19. Lee, H.; Kim, M. G.; Cho, J. Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries. Electrochem. Commun. 2007, 9, 149–154.

    Article  Google Scholar 

  20. Liu, J.; Conry, T. E.; Song, X. Y.; Yang, L.; Doeff, M. M.; Richardson, T. J. Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. J. Mater. Chem. 2011, 21, 9984–9987.

    Article  Google Scholar 

  21. Doan, T. N. L.; Taniguchi, I. Preparation of LiCoPO4/C nanocomposite cathode of lithium batteries with high rate performance. J. Power Sources 2011, 196, 5679–5684.

    Article  Google Scholar 

  22. Markevich, E.; Sharabi, R.; Haik, O.; Borgel, V.; Salitra, G.; Aurbach, D.; Semrau, G.; Schmidt, M. A.; Schall, N.; Stinner, C. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. J. Power Sources 2011, 196, 6433–6439.

    Article  Google Scholar 

  23. Wang, F.; Yang, J.; Li, Y. N.; Wang, J. L. Novel hedgehoglike 5V LiCoPO4 positive electrode material for rechargeable lithium battery. J. Power Sources 2011, 196, 4806–4810.

    Article  Google Scholar 

  24. Lu, Z. G.; Cheng, H.; Lo, M. F.; Chung, C. Y. Pulsed laser deposition and electrochemical characterization of LiFePO4–Ag composite thin films. Adv. Funct. Mater. 2007, 17, 3885–3896.

    Article  Google Scholar 

  25. Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J. Power Sources 2009, 192, 689–692.

    Article  Google Scholar 

  26. Lu, Z. G.; Lo, M. F.; Chung, C. Y. Pulse laser deposition and electrochemical characterization of LiFePO4-C composite thin films. J. Phys. Chem. C 2008, 112, 7069–7078.

    Article  Google Scholar 

  27. Hu, R. Z.; Sun, W.; Zeng, M.; Zhu, M. The fast filling of nano-SnO2 in CNTs by vacuum absorption: A new approach to realize cyclic durable anodes for lithium ion batteries. Nanoscale 2013, 5, 11971–11979.

    Article  Google Scholar 

  28. Laszczynski, N.; Birrozzi, A.; Maranski, K.; Copley, M.; Schuster, M. E.; Passerini, S. Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO4. J. Mater. Chem. A 2016, 4, 17121–17128.

    Article  Google Scholar 

  29. Liu, L.; Zhang, H. J.; Chen, X.; Fang, L.; Bai, Y. J.; Liu, R. C.; Wang, Y. Unique synthesis of sandwiched graphene@(Li0.893Fe0.036)Co(PO4) nanoparticles as highperformance cathode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 12320–12327.

    Article  Google Scholar 

  30. Hu, J. T.; Jiang, Y.; Cui, S. H.; Duan, Y. D.; Liu, T. C.; Guo, H.; Lin, L. P.; Lin, Y.; Zheng, J. X.; Amine K. et al. 3D-printed cathodes of LiMn1–xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithiumion battery. Adv. Energy Mater. 2016, 6, 1600856.

    Article  Google Scholar 

  31. Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F. C.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat. Commun. 2016, 7, 13318.

    Article  Google Scholar 

  32. Maeyoshi, Y.; Miyamoto, S.; Noda, Y.; Munakata, H.; Kanamura, K. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method. J. Power Sources 2017, 337, 92–99.

    Article  Google Scholar 

  33. Hu, R. Z.; Ouyang, Y. P.; Liang, T.; Wang, H.; Liu, J.; Chen, J.; Yang, C. H.; Zhu, M. Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 2017, 29, 1605006.

    Article  Google Scholar 

  34. Yu, F.; Zhang, L. L.; Zhu, M. Y.; An, Y. X.; Xia, L. L.; Wang, X. G.; Dai, B. Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4 (M = Fe, Mn, Co and Ni) for Li-ion batteries. Nano Energy 2014, 3, 64–79.

    Article  Google Scholar 

  35. Rosatella, A. A.; Simeonov, S. P.; Frade, R. F. M.; Afonso, C. A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011, 13, 754–793.

    Article  Google Scholar 

  36. Choudhary, V.; Burnett, R. I.; Vlachos, D. G.; Sandler, S. I. Dehydration of glucose to 5-(hydroxymethyl)furfural and anhydroglucose: Thermodynamic insights. J. Phys. Chem. C 2012, 116, 5116–5120.

    Article  Google Scholar 

  37. Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C. Studies of the Raman spectra of cyclic and acyclic molecules: Combination and prediction spectrum methods. Chem. Phys. Lett. 2012, 531, 210–215.

    Article  Google Scholar 

  38. Lu, Z. G.; Chen, H. L.; Robert, R.; Zhu, B. Y. X.; Deng, J. J.; Wu, L. J.; Chung, C. Y.; Grey, C. P. Citric acid- and ammonium-mediated morphological transformations of olivine LiFePO4 particles. Chem. Mater. 2011, 23, 2848–2859.

    Article  Google Scholar 

  39. Maeyoshi, Y.; Miyamoto, S.; Munakata, H.; Kanamura, K. Enhanced cycle stability of LiCoPO4 by using three-dimensionally ordered macroporous polyimide separator. J. Power Sources 2017, 350, 103–108.

    Article  Google Scholar 

  40. Ni, J. F.; Liu, W.; Liu, J. Z.; Gao, L. J.; Chen, J. T. Investigation on a 3.2 V LiCoPO4/Li4Ti5O12 full battery. Electrochem. Commun. 2013, 35, 1–4.

    Article  Google Scholar 

  41. Lin, X.; Wang, H. Q.; Du, H. W.; Xiong, X. R.; Qu, B.; Guo, Z. P.; Chu, D. W. Growth of lithium lanthanum titanate nanosheets and their application in lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 1486–1492.

    Article  Google Scholar 

  42. Han, Y. H.; Ni, J. F.; Liu, J. Z.; Wang, H. B.; Gao, L. J. Improving electrochemical performance of LiCoPO4 via Mn substitution. J. Mater Technol. 2013, 28, 265–269.

    Article  Google Scholar 

  43. Rui, X. H.; Zhao, X. X.; Lu, Z. Y.; Tan, H. T.; Sim, D. H.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. Olivine-type nanosheets for lithium ion battery cathodes. ACS Nano 2013, 7, 5637–5646.

    Article  Google Scholar 

  44. Balogun, M.-S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

    Article  Google Scholar 

  45. Du, C. Q.; Tang, Z. Y.; Wu, J. W.; Tang, H. Q.; Zhang, X. H. A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material. Electrochim. Acta 2014, 125, 58–64.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51671072, 21303042, and 21671096), the Natural Science Foundation of Shenzhen (Nos. JCYJ20170412153139454 and JCYJ20150331101823677), and the Shenzhen Key Laboratory Project (No. ZDSYS201603311013489).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Chang, Zhouguang Lu or Zhaorong Chang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Chang, K., Li, B. et al. Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries. Nano Res. 11, 2424–2435 (2018). https://doi.org/10.1007/s12274-017-1864-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1864-0

Keywords

Navigation