Skip to main content
Log in

Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A high-performance heterojunction photodetector is formed by combining an n-type Si substrate with p-type monolayer WSe2 obtained using physical vapor deposition. The high quality of the WSe2/Si heterojunction is demonstrated by the suppressed dark current of 1 nA and the extremely high rectification ratio of 107. Under illumination, the heterojunction exhibits a wide photoresponse range from ultraviolet to near-infrared radiation. The introduction of graphene quantum dots (GQDs) greatly elevates the photodetective capabilities of the heterojunction with strong light absorption and long carrier lifetimes. The GQDs/WSe2/Si heterojunction exhibits a high responsivity of ∼ 707 mA·W–1, short response time of 0.2 ms, and good specific detectivity of ∼ 4.51 × 109 Jones. These properties suggest that the GQDs/WSe2/Si heterojunction holds great potential for application in future high-performance photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101.

    Article  Google Scholar 

  2. Guo, N.; Hu, W. D.; Liao, L.; Yip, S.; Ho, J. C.; Miao, J. S.; Zhang, Z.; Zou, J.; Jiang, T.; Wu, S. W. et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater. 2014, 26, 8203–8209.

    Article  Google Scholar 

  3. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.

    Article  Google Scholar 

  4. Lemme, M. C.; Koppens, F. H. L.; Falk A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 2011, 11, 4134–4137.

    Article  Google Scholar 

  5. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 2014, 8, 8292–8299.

    Article  Google Scholar 

  6. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

    Article  Google Scholar 

  7. Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595–601.

    Article  Google Scholar 

  8. Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for highspeed visible-near-infrared photodetectors. Small 2016, 8, 1062–1071.

    Article  Google Scholar 

  9. Zhu, S. Y.; Yu, M. B.; Lo, G. Q.; Kwong, D. L. Near-infrared waveguide-based nickel silicide schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 2008, 92, 081103.

    Article  Google Scholar 

  10. Zhang, S. L.; Östling, M. Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State Mater. Sci. 2003, 28, 1–129.

    Article  Google Scholar 

  11. Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

    Article  Google Scholar 

  12. Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.

    Article  Google Scholar 

  13. Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Grapheneon-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748.

    Article  Google Scholar 

  14. Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for highperformance bulk-silicon-based Schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912–4919.

    Article  Google Scholar 

  15. An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

    Article  Google Scholar 

  16. Pezeshki, A.; Shokouh, S. H. H.; Nazari, T.; Oh, K.; Im, S. Electric and photovoltaic behavior of a few-layer a-MoTe2/ MoS2 dichalcogenide heterojunction. Adv. Mater. 2016, 28, 3216–3222.

    Article  Google Scholar 

  17. Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.

    Article  Google Scholar 

  18. Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, highdetectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

    Article  Google Scholar 

  19. Esmaeili-Rad, M. R.; Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 2013, 3, 2345.

    Article  Google Scholar 

  20. Lopez-Sanchez, O.; Llado, E. A.; Koman, V.; Morral, A. F.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 2014, 8, 3042–3048.

    Article  Google Scholar 

  21. Hao, L. Z.; Liu, Y. J.; Gao, W.; Han, Z. D.; Xue, Q. Z.; Zeng, H. Z.; Wu, Z. P.; Zhu, J.; Zhang, W. L. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015, 117, 114502.

    Article  Google Scholar 

  22. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    Article  Google Scholar 

  23. Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M. L.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H.; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909–1913.

    Article  Google Scholar 

  24. Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.

    Article  Google Scholar 

  25. Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

    Article  Google Scholar 

  26. Chowdhury, R. K.; Maiti, R.; Ghorai, A.; Midya, A.; Ray, S. K. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity. Nanoscale 2016, 8, 13429–13436.

    Article  Google Scholar 

  27. Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao, Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.

    Article  Google Scholar 

  28. Chen, J. R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013, 13, 3106–3110.

    Article  Google Scholar 

  29. Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; Xie, C.; Liang, F. X. et al. Monolayer graphene/germanium Schottky junction as highperformance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366.

    Article  Google Scholar 

  30. Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235–5240.

    Article  Google Scholar 

  31. Zhang, Q.; Jie, J. S.; Diao, S. L.; Shao, Z. B.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W. D.; Xia, H.; Yuan, X. D. et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 2015, 9, 1561–1570.

    Article  Google Scholar 

  32. Sun, Y. Q.; Wang, S. Q.; Li, C.; Luo, P. H.; Tao, L.; Wei, Y.; Shi, G. Q. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 2013, 15, 9907–9913.

    Article  Google Scholar 

  33. Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795–1800.

    Article  Google Scholar 

  34. McDonnell, S.; Azcatl, A.; Addou; R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments. ACS Nano 2014, 8, 6265–6272.

    Article  Google Scholar 

  35. Xu, H.; Wu, J. X.; Feng, Q. L.; Mao, N. N.; Wang, C. M.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306.

    Article  Google Scholar 

  36. Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2014, 15, 709–713.

    Article  Google Scholar 

  37. Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

    Article  Google Scholar 

  38. Mukherjee, S.; Biswas, S.; Das, S.; Ray, S. K. Solution-processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics. Nanotechnology 2017, 28, 135203.

    Article  Google Scholar 

  39. Pradel, K. C.; Jevasuwan, W.; Suwardy, J.; Bando, Y.; Fukata, N.; Wang, Z. L. Solution derived p-ZnO/n-Si nanowire heterojunctions for photodetection. Chem. Phys. Lett. 2016, 658, 158–161.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51672154 and 51372130), MoST(No. 2016YFA0200200), Natural Science Foundation of Jiangsu Province (No. BK20160328), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201517).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Xie or Yanfeng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Fang, Q., Xie, D. et al. Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11, 3233–3243 (2018). https://doi.org/10.1007/s12274-017-1855-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1855-1

Keywords

Navigation