Skip to main content
Log in

Fullerene/cobalt porphyrin charge-transfer cocrystals: Excellent thermal stability and high mobility

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although organic semiconductors with high mobility and thermal stability are particularly desirable for practical applications, facile methods for their development still remains a big challenge. In this work, a charge-transfer cocrystal based on fullerene (C70)/cobalt porphyrin supramolecular architecture was prepared by a solution-processable co-assembly strategy. This supramolecular architecture showed hole mobility as high as 4.21 cm2·V−1·s−1, and a relatively high mobility of 0.02 cm2·V−1·s−1 even after thermal treatment at 1,000 °C. Further studies confirmed the occurrence of charge-transfer from 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato cobalt(II) (CoTMPP) to C70 and the paramagnetic character within the supramolecular system. These factors were found to be responsible for the aforementioned superior performances. Thus, a novel organic semiconductor has been reported in this work, which can be potentially used for next generation electronic devices. Furthermore, it has been demonstrated that charge-transfer co-crystallization is a powerful strategy for the rational design and construction of a broad class of new multifunctional organic co-crystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

    Article  Google Scholar 

  2. Chen, Y. S.; Xu, Y. F.; Zhao, K.; Wan, X. J.; Deng, J. C.; Yan, W. B. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3, 714–721.

    Article  Google Scholar 

  3. Lei, Y. L.; Jin, Y.; Zhou, D. Y.; Gu, W.; Shi, X. B.; Liao, L. S.; Lee, S. T. White-light emitting microtubes of mixed organic charge-transfer complexes. Adv. Mater. 2012, 24, 5345–5351.

    Article  Google Scholar 

  4. Kim, F. S.; Guo, X. G.; Watson, M. D.; Jenekhe, S. A. High-mobility ambipolar transistors and high-gain inverters from a donor-acceptor copolymer semiconductor. Adv. Mater. 2010, 22, 478–482.

    Article  Google Scholar 

  5. Li, Y. J.; Liu, T. F.; Liu, H. B.; Tian, M.-Z.; Li, Y. L. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res. 2014, 47, 1186–1198.

    Article  Google Scholar 

  6. Zhu, W. G.; Zheng, R. H.; Fu, X. L.; Fu, H. B.; Shi, Q.; Zhen, Y. G.; Dong, H. L.; Hu, W. P. Revealing the chargetransfer interactions in self-assembled organic cocrystals: Two-dimensional photonic applications. Angew. Chem., Int. Ed. 2015, 54, 6785–6789.

    Article  Google Scholar 

  7. Busseron, E.; Cid, J.-J.; Wolf, A.; Du, G. Y.; Moulin, E.; Fuks, G.; Maaloum, M.; Polavarapu, P.; Ruff, A.; Saur, A.-K. et al. Light-controlled morphologies of self-assembled triarylamine–fullerene conjugates. ACS Nano 2015, 9, 2760–2772.

    Article  Google Scholar 

  8. Wuest, J. D. Molecular solids: Co-crystals give light a tune-up. Nat. Chem. 2012, 4, 74–75.

    Article  Google Scholar 

  9. Jérome, D. Organic conductors: From charge density wave TTF−TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5592.

    Article  Google Scholar 

  10. Qin, W.; Chen, X. M.; Lohrman, J.; Gong, M. G.; Yuan, G. L.; Wuttig, M.; Ren, S. Q. External stimuli controlled multiferroic charge-transfer crystals. Nano Res. 2016, 9, 925–932.

    Article  Google Scholar 

  11. Yang, J.; Heo, M.; Lee, H. J.; Park, S.-M.; Kim, J. Y.; Shin, H. S. Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires. ACS Nano 2011, 5, 8365–8371.

    Article  Google Scholar 

  12. Qin, W.; Chen, X. M.; Li, H. S.; Gong, M. G.; Yuan, G. L.; Grossman, J. C.; Wuttig, M.; Ren, S. Q. Room temperature multiferroicity of charge transfer crystals. ACS Nano 2015, 9, 9373–9379.

    Article  Google Scholar 

  13. Zhang, J.; Tan, J. H.; Ma, Z. Y.; Xu, W.; Zhao, G. Y.; Geng, H.; Di, C. A.; Hu, W. P.; Shuai, Z. G.; Singh, K. et al. Fullerene/sulfur-bridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. J. Am. Chem. Soc. 2013, 135, 558–561.

    Article  Google Scholar 

  14. Wakahara, T.; D’Angelo, P.; Miyazawa, K. I.; Nemoto, Y.; Ito, O.; Tanigaki, N.; Bradley, D. D. C.; Anthopoulos, T. D. Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. J. Am. Chem. Soc. 2012, 134, 7204–7206.

    Article  Google Scholar 

  15. Armaroli, N.; Marconi, G.; Echegoyen, L.; Bourgeois, J.-P.; Diederich, F. Charge-transfer interactions in face-to-face porphyrin-fullerene systems: Solvent-dependent luminescence in the infrared spectral region. Chem.—Eur. J. 2000, 6, 1629–1645.

    Article  Google Scholar 

  16. Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 2002, 31, 22–36.

    Article  Google Scholar 

  17. Yokota, T.; Kuribara, K.; Tokuhara, T.; Zschieschang, U.; Klauk, H.; Takimiya, K.; Sadamitsu, Y.; Hamada, M.; Sekitani, T.; Someya, T. Flexible low-voltage organic transistors with high thermal stability at 250 °C. Adv. Mater. 2013, 25, 3639–3644.

    Article  Google Scholar 

  18. Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Chen, Y.; Zhuang, X.-D.; Zhu, C. X.; Chan, D. S. H. Thermally stable polymer memory devices based on a π-conjugated triad. Appl. Phys. Lett. 2008, 92, 143302.

    Article  Google Scholar 

  19. Qi, Z.; Cao, J. M.; Li, H.; Ding, L. M.; Wang, J. Z. High-performance thermally stable organic phototransistors based on PSeTPTI/PC61BM for visible and ultraviolet photodetection. Adv. Funct. Mater. 2015, 25, 3138–3146.

    Article  Google Scholar 

  20. Saito, M.; Yamamoto, T.; Osaka, I.; Miyazaki, E.; Takimiya, K.; Kuwabara, H.; Ikeda, M. ChemInform abstract: Facile synthesis of [1]benzothieno[3,2-b]benzothiophene from o-dihalostilbenes. ChemInform 2011, 42, DOI: 10.1002/chin.201101086.

    Google Scholar 

  21. Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota, T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T. et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 2012, 3, 723.

    Article  Google Scholar 

  22. Salim, T.; Lee, H.-W.; Wong, L. H.; Oh, J. H.; Bao, Z. A.; Lam, Y. M. Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer–fullerene solar cells. Adv. Funct. Mater. 2016, 26, 51–65.

    Article  Google Scholar 

  23. Abe, M.; Mori, T.; Osaka, I.; Sugimoto, K.; Takimiya, K. Thermally, operationally, and environmentally stable organic thin-film transistors based on bis[1]benzothieno[2,3-d:2′,3′ -d′]naphtho[2,3-b:6,7-b′]dithiophene derivatives: Effective synthesis, electronic structures, and structure–property relationship. Chem. Mater. 2015, 27, 5049–5057.

    Article  Google Scholar 

  24. Zheng, S. S.; Lu, X. Formation kinetics and photoelectrochemical properties of crystalline C70 one-dimensional microstructures. RSC Adv. 2015, 5, 38202–38208.

    Article  Google Scholar 

  25. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

    Article  Google Scholar 

  26. Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys. 1989, 91, 1762–1774.

    Article  Google Scholar 

  27. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theoret. Chim. Acta 1990, 77, 123–141.

    Article  Google Scholar 

  28. Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441.

    Article  Google Scholar 

  29. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.

    Article  Google Scholar 

  30. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.et al .Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.

    Google Scholar 

  31. Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M. C60 nanowhiskers formed by the liquid–liquid interfacial precipitation method. J. Mater. Res. 2002, 17, 83–88.

    Article  Google Scholar 

  32. Hasobe, T.; Sandanayaka, A. S. D.; Wada, T.; Araki, Y. Fullerene-encapsulated porphyrin hexagonal nanorods. An anisotropic donor-acceptor composite for efficient photoinduced electron transfer and light energy conversion. Chem. Commun. 2008, 3372–3374.

    Google Scholar 

  33. Konarev, D. V.; Kovalevsky, A. Y.; Li, X.; Neretin, I. S.; Litvinov, A. L.; Drichko, N. Y. V.; Slovokhotov, Y. L.; Coppens, P.; Lyubovskaya, R. N. Synthesis and structure of multicomponent crystals of fullerenes and metal tetraarylporphyrins. Inorg. Chem. 2002, 41, 3638–3646.

    Article  Google Scholar 

  34. Herrmann, I.; Kramm, U. I.; Fiechter, S.; Bogdanoff, P. Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim. Acta 2009, 54, 4275–4287.

    Article  Google Scholar 

  35. Herrmann, I.; Kramm, U. I.; Fiechter, S.; Brüser, V.; Kersten, H.; Bogdanoff, P. Comparative study of the carbonisation of CoTMPP by low temperature plasma and heat treatment. Plasma Process. Polym. 2010, 7, 515–526.

    Article  Google Scholar 

  36. Céolin, R.; Tamarit, J. L.; Barrio, M.; López, D. O.; Toscani, S.; Allouchi, H.; Agafonov, V.; Szwarc, H. Solid-state studies on a cubic 1:1 solvate of C60 grown from dichloromethane and leading to another hexagonal C60 polymorph. Chem. Mater. 2001, 13, 1349–1355.

    Article  Google Scholar 

  37. Zheng, S. S.; Xu, M. L.; Lu, X. Facile method toward hierarchical fullerene architectures with enhanced hydrophobicity and photoluminescence. ACS Appl. Mater. Interfaces 2015, 7, 20285–20291.

    Article  Google Scholar 

  38. Li, C. Z.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, X. S.; Jen, A. K. Y. Solution-processible highly conducting fullerenes. Adv. Mater. 2013, 25, 2457–2461.

    Article  Google Scholar 

  39. Ji, H. X.; Hu, J. S.; Wan, L. J.; Tang, Q. X.; Hu, W. P. Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod. J. Mater. Chem. 2008, 18, 328–332.

    Article  Google Scholar 

  40. Sato, S.; Seki, S.; Luo, G. F.; Suzuki, M.; Lu, J.; Nagase, S.; Akasaka, T. Tunable charge-transport properties of Ih- C80endohedral metallofullerenes: Investigation of La2@C80, Sc3N@C80, and Sc3C2@C80. J. Am. Chem. Soc. 2012, 134, 11681–11686.

    Article  Google Scholar 

  41. Barnes, J. C.; Dale, E. J.; Prokofjevs, A.; Narayanan, A.; Gibbs-Hall, I. C.; Juríček, M.; Stern, C. L.; Sarjeant, A. A.; Botros, Y. Y.; Stupp, S. I. et al. Semiconducting single crystals comprising segregated arrays of complexes of C60. J. Am. Chem. Soc. 2015, 137, 2392–2399.

    Article  Google Scholar 

  42. Guo, Y. G.; Li, C. J.; Wan, L. J.; Chen, D. M.; Wang, C. R.; Bai, C. L.; Wang, Y. G. Well-defined fullerene nanowire arrays. Adv. Funct. Mater. 2003, 13, 626–630.

    Article  Google Scholar 

  43. Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. A. High-mobility field-effect transistors from large-area solution-grown aligned C60single crystals. J. Am. Chem. Soc.

  44. Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H..pi.-Cation radicals and dications of metalloporphyrins. J. Am. Chem. Soc. 1970, 92, 3451–3459.

    Article  Google Scholar 

  45. Sato, S.; Nikawa, H.; Seki, S.; Wang, L.; Luo, G. F.; Lu, J.; Haranaka, M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew. Chem., Int. Ed. 2012, 51, 1589–1591.

    Article  Google Scholar 

  46. Boyd, P. D. W.; Reed, C. A. Fullerene−porphyrin constructs. Acc. Chem. Res. 2005, 38, 235–242.

    Article  Google Scholar 

  47. Ren, J.; Meng, S.; Kaxiras, E. Theoretical investigation of the C60/copper phthalocyanine organic photovoltaic heterojunction. Nano Res. 2012, 5, 248–257.

    Article  Google Scholar 

  48. Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil, L. E.; Jurchescu, O. D. Charge-transfer complexes: New perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Thousand Talents Program of China, the National Natural Science Foundation of China (Nos. 51472095, 51602112, 51672093 and 21103224), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1014), Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), and Ministry of Education are gratefully acknowledged. This work was partially supported by Japan Society for the Promotion of Science (JSPS) (Nos. JP16F16360, 26102011, 26249145, and 15K21721). We thank the Analytical and Testing Center in Huazhong University of Science and Technology for all related measurements. We also acknowledge Dr. Akihiko Fujiwara and Dr. Kunihisa Sugimoto for single-crystal XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuhito Tsukagoshi, Shu Seki or Xing Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Zhong, J., Matsuda, W. et al. Fullerene/cobalt porphyrin charge-transfer cocrystals: Excellent thermal stability and high mobility. Nano Res. 11, 1917–1927 (2018). https://doi.org/10.1007/s12274-017-1809-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1809-7

Keywords

Navigation