Skip to main content
Log in

Exploration of channel width scaling and edge states in transition metal dichalcogenides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We explore the impact of edge states in three types of transition metal dichalcogenides (TMDs), namely metallic Td-phase WTe2 and semiconducting 2H-phase MoTe2 and MoS2, by patterning thin flakes into ribbons with varying channel widths. No obvious charge depletion at the edges is observed for any of these three materials, in contrast to observations made for graphene nanoribbon devices. The semiconducting ribbons are characterized in a three-terminal field-effect transistor (FET) geometry. In addition, two ribbon array designs have been carefully investigated and found to exhibit current levels higher than those observed for conventional one-channel devices. Our results suggest that device structures incorporating a high number of edges can improve the performance of TMD FETs. This improvement is attributed to a higher local electric field, resulting from the edges, increasing the effective number of charge carriers, and the absence of any detrimental edge-related scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  Google Scholar 

  2. Das, S.; Appenzeller, J. Where does the current flow in twodimensional layered systems? Nano Lett. 2013, 13, 3396–3402.

    Article  Google Scholar 

  3. Das, S.; Appenzeller, J. Screening and interlayer coupling in multilayer MoS2. Phys. Status Solidi RRL 2013, 7, 268–273.

    Article  Google Scholar 

  4. Zhang, F.; Appenzeller, J. Tunability of short-channel effects in MoS2 field-effect devices. Nano Lett. 2015, 15, 301–306.

    Article  Google Scholar 

  5. Pan, H.; Zhang, Y.-W. Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J. Mater. Chem. 2012, 22, 7280–7290.

    Article  Google Scholar 

  6. Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.

    Article  Google Scholar 

  7. Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.

    Article  Google Scholar 

  8. Botello-Méndez, A. R.; López-Urías, F.; Terrones, M.; Terrones, H. Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 2009, 20, 325703.

    Article  Google Scholar 

  9. Ataca, C.; Şahin, H.; Aktürk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941.

    Article  Google Scholar 

  10. Bollinger, M. V.; Lauritsen, J. V.; Jacobsen, K. W.; Nørskov, J. K.; Helveg, S.; Besenbacher, F. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 2001, 87, 196803.

    Article  Google Scholar 

  11. Liu, H.; Gu, J. J.; Ye, P. D. MoS2 nanoribbon transistors: Transition from depletion mode to enhancement mode by channel-width trimming. IEEE Electron Device Lett. 2012, 33, 1273–1275.

    Article  Google Scholar 

  12. Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14, 2443–2447.

    Article  Google Scholar 

  13. Cheng, F.; Xu, H.; Xu, W. T.; Zhou, P. J.; Martin, J.; Loh, K. P. Controlled growth of 1D MoSe2 nanoribbons with spatially modulated edge states. Nano Lett. 2017, 17, 1116–1120.

    Article  Google Scholar 

  14. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

    Article  Google Scholar 

  15. Miyamoto, Y.; Nakada, K.; Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. Rev. B 1999, 59, 9858–9861.

    Article  Google Scholar 

  16. Sui, Y.; Low, T.; Lundstrom, M.; Appenzeller, J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett. 2011, 11, 1319–1322.

    Article  Google Scholar 

  17. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  Google Scholar 

  18. Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  19. Chen, Z. H.; Lin, Y.-M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Phys. E Low Dimens. Syst. Nanostruct. 2007, 40, 228–232.

    Article  Google Scholar 

  20. Lee, C.-H.; Silva, E. C.; Calderin, L.; Nguyen, M. A. T.; Hollander, M. J.; Bersch, B.; Mallouk, T. E.; Robinson, J. A. Tungsten ditelluride: A layered semimetal. Sci. Rep. 2015, 5, 10013.

    Article  Google Scholar 

  21. Mleczko, M. J.; Xu, R. L.; Okabe, K.; Kuo, H.-H.; Fisher, I. R.; Wong, H. S. P.; Nishi, Y.; Pop, E. High current density and low thermal conductivity of atomically thin semimetallic WTe2. ACS Nano 2016, 10, 7507–7514.

    Article  Google Scholar 

  22. Chu, T.; Chen, Z. H. Achieving large transport bandgaps in bilayer graphene. Nano Res. 2015, 8, 3228–3236.

    Article  Google Scholar 

  23. Appenzeller, J.; Zhang, F.; Das, S.; Knoch, J. Transition metal dichalcogenide schottky barrier transistors: A device analysis and material comparison. In 2D Materials for Nanoelectronics, Houssa, M.; Dimoulas, A.; Molle, A., Eds.; CRC Press: Boca Raton, FL, 2016; pp 207–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Lee, CH., Robinson, J.A. et al. Exploration of channel width scaling and edge states in transition metal dichalcogenides. Nano Res. 11, 1768–1774 (2018). https://doi.org/10.1007/s12274-017-1794-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1794-x

Keywords

Navigation