Skip to main content
Log in

Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Yolk–shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption–desorption isotherms indicate a Brunauer–Emmett–Teller (BET) specific surface area of 74 m2/g and a pore width of 5–30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20 wt.% yolk–shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of −63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk–shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  Google Scholar 

  2. Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

    Article  Google Scholar 

  3. Okoniewski, M.; Stuchly, M. A. A study of the handset antenna and human body interaction. IEEE Trans. Microw. Theory Tech. 1996, 44, 1855–1864.

    Article  Google Scholar 

  4. Frey, A. H. Headaches from cellular telephones: Are they real and what are the implications? Environ. Health Perspect. 1998, 106, 101–103.

    Article  Google Scholar 

  5. Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

    Article  Google Scholar 

  6. Zhang, B.; Du, Y. C.; Zhang, P.; Zhao, H. T.; Kang, L. L.; Han, X. J.; Xu, P. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 2013, 130, 1909–1916.

    Article  Google Scholar 

  7. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    Article  Google Scholar 

  8. Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly (3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.

    Article  Google Scholar 

  9. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  Google Scholar 

  10. Chen, C.; Liu, Q. H.; Bi, H.; You, W. B.; She, W.; Che, R. C. Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers. Phys. Chem. Chem. Phys. 2016, 18, 26712–26718.

    Article  Google Scholar 

  11. Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.

    Article  Google Scholar 

  12. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 2016, 304, 552–562.

    Article  Google Scholar 

  13. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Well-defined core-shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: Synthesis and their superior microwave absorption performance in the Ku band. Ind. Eng. Chem. Res. 2016, 55, 6263–6275.

    Article  Google Scholar 

  14. Liu, J. W.; Cheng, J.; Chen, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C 2013, 117, 489–495.

    Article  Google Scholar 

  15. Liu, J. W.; Xu, J. J.; Chen, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. Eur. J. 2013, 21, 6746–6752.

    Article  Google Scholar 

  16. Liu, J. W.; Xu, J. J.; Chen, R. C.; Chen, H. J.; Liu, Z. W.; Xia, F. Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J. Mater. Chem. 2012, 22, 9277–9284.

    Article  Google Scholar 

  17. Xu, J. J.; Liu, J. W.; Chen, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

    Article  Google Scholar 

  18. Tian, C. H.; Du, Y. C.; Cui, C. S.; Deng, Z. L.; Xue, J. L.; Xu, P.; Qiang, R.; Wang, Y.; Han, X. J. Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J. Mater. Sci. 2017, 52, 6349–6361.

    Article  Google Scholar 

  19. Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Shao, G.; Fan, B. B.; Bai, Z. Y.; Zhang, R. Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 28917–28925.

    Article  Google Scholar 

  20. Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

    Article  Google Scholar 

  21. Wu, R. B.; Zhou, K.; Yang, Z. H.; Qian, X. K.; Wei, J.; Liu, L.; Huang, Y. Z.; Kong, L. B.; Wang, L. Y. Moltensalt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 2013, 15, 570–576.

    Article  Google Scholar 

  22. Liu, J.; Cao, M.-S.; Luo, Q.; Shi, H.-L.; Wang, W.-Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 2016, 8, 22615–22622.

    Article  Google Scholar 

  23. Han, R.; Li, W.; Pan, W. W.; Zhu, M. G.; Zhou, D.; Li, F.-S. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 2014, 4, 7493.

    Article  Google Scholar 

  24. Shen, J. Y.; Yao, Y. T.; Liu, Y. J.; Leng, J. S. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 2016, 4, 7614–7621.

    Article  Google Scholar 

  25. Zhang, X. F.; Li, Y. X.; Liu, R. G.; Rao, Y.; Rong, H. W.; Qin, G. W. High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 2016, 8, 3494–3498.

    Article  Google Scholar 

  26. Ma, M. L.; Zhang, Q. Y.; Zhang, H. P.; Geng, W. C.; Zhang, B. L.; Dou, J. B. Preparation of one-dimensional Fe3O4/ P(MAA-DVB) nanochains by magnetic-field-induced precipitation polymerization. Sci. Sin. Chim. 2012, 42, 1007–1013.

    Article  Google Scholar 

  27. Ma, M. L.; Zhang, Q. Y.; Xin, T. J.; Zhang, H. P.; Geng, W. C.; Jian, Z. Preparation and characterization of structure-tailored magnetic fluorescent Fe3O4/P(GMA–EGDMA–NVCz) core–shell microspheres. J. Mater. Sci. 2013, 48, 5302–5308.

    Article  Google Scholar 

  28. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Wang, W. B.; Su, K. H.; Zhang, Q. Y. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloy. Compd. 2016, 693, 432–439.

    Article  Google Scholar 

  29. Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S. G.; Qi, X. Q.; Wei, Z. D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5414–5420.

    Article  Google Scholar 

  30. Zhang, B. L.; Li, P. T.; Zhang, H. P.; Li, X. J.; Tian, L.; Wang, H.; Chen, X.; Ali, N.; Ali, Z.; Zhang, Q. Y. Redblood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 2016, 366, 328–338.

    Article  Google Scholar 

  31. Zhang, B. L.; Li, P. T.; Zhang, H. P.; Wang, H.; Li, X. J.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Y. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 2016, 291, 287–297.

    Article  Google Scholar 

  32. Lei, X. F.; Chen, Y.; Zhang, H. P.; Li, X. J.; Yao, P.; Zhang, Q. Y. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater. Interfaces 2013, 5, 10207–10220.

    Article  Google Scholar 

  33. Gu, J. W.; Liang, C. B.; Zhao, X. M.; Gan, B.; Qiu, H.; Guo, Y.; Yang, X. Q.; Zhang, Q.; Wang, D.-Y. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 2017, 139, 83–89.

    Article  Google Scholar 

  34. Reddy, G. K.; Boolchand, P.; Smirniotis, P. G. Unexpected behavior of copper in modified ferrites during high temperature WGS Reaction Aspects of Fe3+↔Fe2+ redox chemistry from Mössbauer and XPS studies. J. Phys. Chem. C 2012, 116, 11019–11031.

    Article  Google Scholar 

  35. Lei, X. F.; Chen, Y. H.; Qiao, M. T.; Tian, L. D.; Zhang, Q. Y. Hyperbranched polysiloxane (HBPSi)-based polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties. J. Mater. Chem. C 2016, 4, 2134–2146.

    Article  Google Scholar 

  36. Gu, J. W.; Meng, X. D.; Tang, Y. S.; Li, Y.; Zhuang, Q.; Kong, J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. A: Appl. Sci. Manufact. 2017, 92, 27–32.

    Article  Google Scholar 

  37. Zhang, X. H.; Jin, B.; Li, L. L.; Cheng, T.; Wang, H. H.; Xin, P. M.; Lang, X. Y.; Yang, C. C.; Gao, W.; Zhu, Y. F. et al. (De)Lithiation of tubular polypyrrole-derived carbon/ sulfur composite in lithium-sulfur batteries. J. Electroanal. Chem. 2016, 780, 26–31.

    Article  Google Scholar 

  38. Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

    Article  Google Scholar 

  39. To, J. W.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W.-G.; Pan, L. J.; Tok, J. B.-H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.

    Article  Google Scholar 

  40. Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ. Environ. Sci. 2011, 4, 717–724.

    Article  Google Scholar 

  41. Kwon, T.; Nishihara, H.; Itoi, H.; Yang, Q.-H.; Kyotani, T. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir 2009, 25, 11961–11968.

    Article  Google Scholar 

  42. Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M. G.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

    Article  Google Scholar 

  43. Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

    Article  Google Scholar 

  44. Li, W. R.; Chen, D. H.; Li, Z.; Shi, Y. F.; Wan, Y.; Huang, J. J.; Yang, J. J.; Zhao, D. Y.; Jiang, Z. Y. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 2007, 9, 569–573.

    Article  Google Scholar 

  45. Herzer, G. Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 1992, 112, 258–262.

    Article  Google Scholar 

  46. Livingston, J. D. A review of coercivity mechanisms (invited). J. Appl. Phys. 1981, 52, 2544–2548.

    Article  Google Scholar 

  47. Li, N.; Huang, G.-W.; Li, Y.; Xiao, H.-M.; Feng, Q.-P.; Hu, N.; Fu, S.-Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

    Article  Google Scholar 

  48. Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

    Article  Google Scholar 

  49. Huang, X. G.; Zhang, J.; Lai, M.; Sang, T. Y. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloy. Compd. 2015, 627, 367–373.

    Article  Google Scholar 

  50. Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.

    Article  Google Scholar 

  51. Zhang, T.; Huang, D. Q.; Yang, Y.; Kang, F. Y.; Gu, J. L. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng.: B 2013, 178, 1–9.

    Article  Google Scholar 

  52. Liu, X.; Guo, H. Z.; Xie, Q. S.; Luo, Q.; Wang, L.-S.; Peng, D.-L. Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J. Alloy. Compd. 2015, 649, 537–543.

    Article  Google Scholar 

  53. Li, W. X.; Lv, B. L.; Wang, L. C.; Li, G. M.; Xu, Y. Fabrication of Fe3O4@C core–shell nanotubes and their application as a lightweight microwave absorbent. RSC Adv. 2014, 4, 55738–55744.

    Article  Google Scholar 

  54. Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

    Article  Google Scholar 

  55. Chen, Y.-J.; Xiao, G.; Wang, T.-S.; Ouyang, Q.-Y.; Qi, L.-H.; Ma, Y.; Gao, P.; Zhu, C.-L.; Cao, M.-S.; Jin, H.-B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.

    Article  Google Scholar 

  56. Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  Google Scholar 

  57. Fleming, J. Web Navigation: Designing the User Experience; O’Reilly Media: Sebastopol, CA, 1998.

    Google Scholar 

  58. Sun, Y.; Xu, J. L.; Qiao, W.; Xu, X. B.; Zhang, W. L.; Zhang, K. Y.; Zhang, X.; Chen, X.; Zhong, W.; Du, Y. W. Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 2016, 8, 31878–31886.

    Article  Google Scholar 

  59. Fang, P. H. Cole–Cole diagram and the distribution of relaxation times. J. Chem. Phys. 1965, 42, 3411–3413.

    Article  Google Scholar 

  60. Shi, X.-L.; Cao, M.-S.; Yuan, J.; Fang, X.-Y. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009, 95, 163108.

    Article  Google Scholar 

  61. Zhao, B.; Zhao, W. Y.; Shao, G.; Fan, B. B.; Zhang, R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton T. 2015, 44, 15984–15993.

    Article  Google Scholar 

  62. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys. Chem. Chem. Phys. 2015, 17, 2531–2539.

    Article  Google Scholar 

  63. Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.

    Article  Google Scholar 

  64. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.

    Article  Google Scholar 

  65. Liu, Y.; Cui, T. T.; Wu, T.; Li, Y. N.; Tong, G. X. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 2016, 27, 165707.

    Article  Google Scholar 

  66. Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

    Article  Google Scholar 

  67. Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@ CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.

    Article  Google Scholar 

  68. Chen, Y.-J.; Gao, P.; Wang, R.-X.; Zhu, C.-L.; Wang, L.-J.; Cao, M.-S.; Jin, H.-B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064.

    Article  Google Scholar 

  69. Ohkoshi, S. I.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew. Chem., Int. Ed. 2007, 46, 8392–8395.

    Article  Google Scholar 

  70. Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. Constructing uniform core–shell PPy@ PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099.

    Article  Google Scholar 

  71. Menéndez, J. A.; Juárez-Pérez, E. J.; Ruisánchez, E.; Bermúdez, J. M.; Arenillas, A. Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon 2011, 49, 346–349.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Nos. 51433008 and 51673156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, M., Lei, X., Ma, Y. et al. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1767-0

Keywords

Navigation