Skip to main content
Log in

Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, hierarchically structured SnO2 microspheres are designed and synthesized as an efficient anode material for lithium-ion batteries using hollow SnO2 nanoplates. Three-dimensionally ordered macroporous (3-DOM) SnOx-C microspheres synthesized by spray pyrolysis are transformed into hierarchically structured SnO2 microspheres by a two-step post-treatment process. Sulfidation produces hierarchically structured SnS-SnS2-C microspheres comprising tin sulfide nanoplate and carbon building blocks. A subsequent oxidation process produces SnO2 microspheres from hollow SnO2 nanoplate building blocks, which are formed by Kirkendall diffusion. The discharge capacity of the hierarchically structured SnO2 microspheres at a current density of 5 A·g−1 for the 600th cycle is 404 mA·h·g−1. The hierarchically structured SnO2 microspheres have reversible discharge capacities of 609 and 158 mA·h·g−1 at current densities of 0.5 and 30 A·g−1, respectively. The ultrafine nanosheets contain empty voids that allow excellent lithium-ion storage performance, even at high current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, M.-H.; Huang, S.-Z.; Chen, L.-H.; Li, Y.; Yang, X.-Y.; Yuan, Z.-Y.; Su, B.-L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.

    Article  Google Scholar 

  2. Li, Y.; Fu, Z.-Y.; Su, B.-L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.

    Article  Google Scholar 

  3. Lu, X.-F.; Huang, Z.-X.; Tong, Y.-X.; Li, G.-R. Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem. Sci. 2016, 7, 510–517.

    Article  Google Scholar 

  4. Wang, X. L.; Fan, X. Y.; Li, G.; Li, M.; Xiao, X. C.; Yu, A. P.; Chen, Z. W. Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. Carbon 2015, 93, 258–265.

    Article  Google Scholar 

  5. Huang, G. W.; Liu, H.; Wang, S. P.; Yang, X.; Liu, B. H.; Chen, H. Z.; Xu, M. S. Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution. J. Mater. Chem. A 2015, 3, 24128–24138.

    Article  Google Scholar 

  6. Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B 2009, 140, 319–336.

    Article  Google Scholar 

  7. Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337–11343.

    Article  Google Scholar 

  8. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    Article  Google Scholar 

  9. Chang, M. C. Three dimensionally ordered microstructure of polycrystalline zirconia ceramics with micro-porosity. J. Korean Ceram. Soc. 2016, 53, 50–55.

    Article  Google Scholar 

  10. Yu, Y.; Chen, C.-H.; Shi, Y. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007, 19, 993–997.

    Article  Google Scholar 

  11. Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 2005, 15, 1845–1850.

    Article  Google Scholar 

  12. Chen, M.; Wang, Z. L.; Wang, A.; Li, W. S.; Liu, X.; Fu, L. J.; Huang, W. Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 9865–9872.

    Article  Google Scholar 

  13. Wang, M.; Li, G. D.; Xu, H. Y.; Qian, Y. T.; Yang, J. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 2013, 5, 1003–1008.

    Article  Google Scholar 

  14. Wang, X.; Guan, H.; Chen, S. M.; Li, H. Q.; Zhai, T. Y.; Tang, D. M.; Bando, Y.; Golberg, D. Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. Chem. Commun. 2011, 47, 12280–12282.

    Article  Google Scholar 

  15. Wang, B.; Wu, H. B.; Zhang, L.; Lou, X. W. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem., Int. Ed. 2013, 52, 4165–4168.

    Article  Google Scholar 

  16. Wang, X. L.; Liu, Y. G.; Arandiyan, H.; Yang, H. P.; Bai, L.; Mujtaba, J.; Wang, Q. G.; Liu, S. H.; Sun, H. Y. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Appl. Surf. Sci. 2016, 389, 240–246.

    Article  Google Scholar 

  17. Xiao, Q. F.; Gu, M.; Yang, H.; Li, B.; Zhang, C. M.; Liu, Y.; Liu, F.; Dai, F.; Yang, L.; Liu, Z. Y. et al. Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 2015, 6, 8844.

    Article  Google Scholar 

  18. Zhou, X. S.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17456–17459.

    Article  Google Scholar 

  19. Yin, X. M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Chen, L. B.; Wang, T. H. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 2010, 114, 8084–8088.

    Article  Google Scholar 

  20. Shen, L. F.; Yu, L.; Yu, X.-Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

    Article  Google Scholar 

  21. Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenidebased nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167–6196.

    Article  Google Scholar 

  22. Jiang, Y. C.; Zhang, S. D.; Ji, Q.; Zhang, J.; Zhang, Z. P.; Wang, Z. Y. Ultrathin Cu7S4 nanosheets-constructed hierarchical hollow cubic cages: One-step synthesis based on kirkendall effect and catalysis property. J. Mater. Chem. A 2014, 2, 4574–4579.

    Article  Google Scholar 

  23. Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gösele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 2006, 5, 627–631.

    Article  Google Scholar 

  24. Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gösele, U. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept. Nano Lett. 2007, 7, 993–997.

    Article  Google Scholar 

  25. Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195–12216.

    Article  Google Scholar 

  26. Liu, J.; Xue, D. F. Hollow nanostructured anode materials for li-ion batteries. Nanoscale Res. Lett. 2010, 5, 1525–1534.

    Article  Google Scholar 

  27. Park, G. D.; Lee, J.-K.; Kang, Y. C. Synthesis of uniquely structured SnO2 hollow nanoplates and their electrochemical properties for li-ion storage. Adv. Funct. Mater. 2017, 27, 1603399.

    Article  Google Scholar 

  28. Liu, J.; Xue, D. F. Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater. 2008, 20, 2622–2627.

    Article  Google Scholar 

  29. Yoon, T.-J.; Shao, H. L.; Weissleder, R.; Lee, H. Oxidation kinetics and magnetic properties of elemental iron nanoparticles. Part. Part. Syst. Charact. 2013, 30, 667–671.

    Article  Google Scholar 

  30. Sathish, M.; Mitani, S.; Tomai, T.; Honma, I. Ultrathin SnS2 nanoparticles on graphene nanosheets: Synthesis, characterization, and li-ion storage applications. J. Phys. Chem. C 2012, 116, 12475–12481.

    Article  Google Scholar 

  31. Nair, P. K.; Nair, M. T. S. XRD, XPS, optical and electrical studies on the conversion of SnS thin films to SnO2. Thin Solid Films 1994, 239, 85–92.

    Article  Google Scholar 

  32. Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.

    Article  Google Scholar 

  33. Ma, J. M.; Lei, D. N.; Mei, L.; Duan, X. C.; Li, Q. H.; Wang, T. H.; Zheng, W. J. Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 2012, 14, 832–836.

    Article  Google Scholar 

  34. Gao, W. S.; Cao, M.; Yang, J.; Shen, J. S.; Huang, J.; Zhao, Y.; Sun, Y.; Wang, L. J.; Shen, Y. Controllable synthesis of SnS2/SnS nanosheets and their photoelectric properties. Mater. Lett. 2016, 180, 284–287.

    Article  Google Scholar 

  35. Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

    Article  Google Scholar 

  36. Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3408–3413.

    Article  Google Scholar 

  37. Gedi, S.; Reddy, V. R. M.; Pejjai, B.; Jeon, C.-W.; Park, C.; Reddy, K. T. R. A facile inexpensive route for SnS thin film solar cells with SnS2 buffer. Appl. Surf. Sci. 2016, 372, 116–124.

    Article  Google Scholar 

  38. Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481–489.

    Article  Google Scholar 

  39. Zhou, X. L.; Zhou, T. F.; Hu, J. C.; Li, J. L. Controlled strategy to synthesize SnO2 decorated SnS2 nanosheets with enhanced visible light photocatalytic activity. CrystEngComm 2012, 14, 5627–5633.

    Article  Google Scholar 

  40. Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in li-ion batteries. Nano Res. 2013, 6, 55–64.

    Article  Google Scholar 

  41. Cai, J. J.; Li, Z. S.; Shen, P. K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for li-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4093–4098.

    Article  Google Scholar 

  42. Zhou, X. S.; Wan, L.-J.; Guo, Y.-G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

    Article  Google Scholar 

  43. Liang, J.; Yu, X.-Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12803–12807.

    Article  Google Scholar 

  44. Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.

    Article  Google Scholar 

  45. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  46. Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for li-ion batteries. ACS Nano 2015, 9, 4026–4035.

    Article  Google Scholar 

  47. Park, G. D.; Cho, J. S.; Kang, Y. C. Novel cobalt oxidenanobubble- decorated reduced graphene oxide sphere with superior electrochemical properties prepared by nanoscale Kirkendall diffusion process. Nano Energy 2015, 17, 17–26.

    Article  Google Scholar 

  48. Cho, J. S.; Hong, Y. J.; Lee, J.-H.; Kang, Y. C. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries. Nanoscale 2015, 7, 8361–8367.

    Article  Google Scholar 

  49. Park, G. D.; Cho, J. S.; Kang, Y. C. Multiphase and doublelayer NiFe2O4@NiO-hollow-nanosphere-decorated reduced graphene oxide composite powders prepared by spray pyrolysis applying nanoscale Kirkendall diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16842–16849.

    Article  Google Scholar 

  50. Cho, J. S.; Ju, H. S.; Kang, Y. C. Applying nanoscale Kirkendall diffusion for template-free, kilogram-scale production of SnO2 hollow nanospheres via spray drying system. Sci. Rep. 2016, 6, 23915.

    Article  Google Scholar 

  51. Cho, J. S.; Won, J. M.; Lee, J.-K.; Kang, Y. C. Design and synthesis of multiroom-structured metal compounds—Carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 2016, 26, 466–478.

    Article  Google Scholar 

  52. Park, G. D.; Cho, J. S.; Kang, Y. C. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 2015, 7, 16781–16788.

    Article  Google Scholar 

  53. Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573.

    Article  Google Scholar 

  54. Zhong, Y. R.; Yang, M.; Zhou, X. L.; Luo, Y. T.; Wei, J. P.; Zhou, Z. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: Rational design of MnCO3/large-area graphene composites. Adv. Mater. 2015, 27, 806–812.

    Article  Google Scholar 

  55. Sim, C. M.; Choi, S. H.; Kang, Y. C. Superior electrochemical properties of LiMn2O4 yolk–shell powders prepared by a simple spray pyrolysis process. Chem. Commun. 2013, 49, 5978–5980.

    Article  Google Scholar 

  56. Lv, D. P.; Gordin, M. L.; Yi, R.; Xu, T.; Song, J. X.; Jiang, Y.-B.; Choi, D.; Wang, D. H. GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance. Adv. Funct. Mater. 2014, 24, 1059–1066.

    Article  Google Scholar 

  57. Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858–1867.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2017R1A2B2008592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chan Kang.

Electronic Supplementary Material

12274_2017_1744_MOESM1_ESM.pdf

Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G.D., Kang, Y.C. Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries. Nano Res. 11, 1301–1312 (2018). https://doi.org/10.1007/s12274-017-1744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1744-7

Keywords

Navigation