Skip to main content
Log in

Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous Fe3O4/carbon microspheres (PFCMs) were successfully fabricated via a facile electrospray method and subsequent heat treatment, using ferrous acetylacetonate, carbon nanotubes (CNTs), Ketjen black (KB), polyvinylpyrrolidone (PVP), and polystyrene (PS) as raw materials. The porous carbon sphere framework decorated with well-dispersed CNTs and KB exhibits excellent electronic conductivity and acts as a good host to confine the Fe3O4 nanoparticles. The abundant mesopores in the carbon matrix derived from polymer pyrolysis can effectively accommodate the volume changes of Fe3O4 during the charge/discharge process, facilitate electrolyte penetration, and promote fast ion diffusion. Moreover, a thin amorphous carbon layer on the Fe3O4 nanoparticle formed during polymer carbonization can further alleviate the mechanical stress associated with volume changes, and preventing aggregation and exfoliation of Fe3O4 nanoparticles during cycling. Therefore, as anode materials for lithium-ion batteries, the PFCMs exhibited excellent cycling stability with high specific capacities, and outstanding rate performances. After 130 cycles at a small current density of 0.1 A·g–1, the reversible capacity of the PFCM electrode is maintained at almost 1,317 mAh·g–1. High capacities of 746 and 525 mAh·g–1 were still achieved after 300 cycles at the larger currents of 1 and 5 A·g–1, respectively. The optimized structure design and facile fabrication process provide a promising way for the utilization of energy storage materials, which have high capacities but whose performance is hindered by large volume changes and poor electrical conductivity in lithium or sodium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  2. Ding, C.; Zeng, Y. W.; Cao, L. L.; Zhao, L. F.; Zhang, Y. Hierarchically porous Fe3O4/C nanocomposite microspheres via a CO2 bubble-templated hydrothermal approach as high-rate and high-capacity anode materials for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 5898–5908.

    Article  Google Scholar 

  3. Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Strongly coupled carbon nanofiber–metal oxide coaxial nanocables with enhanced lithium storage properties. Energy Environ. Sci. 2014, 7, 302–305.

    Article  Google Scholar 

  4. Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

    Article  Google Scholar 

  5. Armstrong, M. J.; O’ Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

    Article  Google Scholar 

  6. Yu, H. J.; Guo, G. N.; Ji, L.; Li, H. W.; Yang, D.; Hu, J. H.; Dong, A. G. Designed synthesis of ordered mesoporous graphene spheres from colloidal nanocrystals and their application as a platform for high-performance lithium-ion battery composite electrodes. Nano Res. 2016, 9, 3757–3771.

    Article  Google Scholar 

  7. Duan, B.; Gao, X.; Yao, X.; Fang, Y.; Huang, L.; Zhou, J.; Zhang, L. N. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 2016, 27, 482–491.

    Article  Google Scholar 

  8. Jiang, B. B.; Han, C. P.; Li, B.; He, Y. J.; Lin, Z. Q. In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 2016, 10, 2728–2735.

    Article  Google Scholar 

  9. Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y.-G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

    Google Scholar 

  10. Deng, J. J.; Yu, X. L.; He, Y. B.; Li, B. H.; Yang, Q.-H.; Kang, F. Y. A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 2017, 6, 61–69.

    Article  Google Scholar 

  11. Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.

    Article  Google Scholar 

  12. Xing, Z.; Ju, Z. C.; Yang, J.; Xu, H. Y.; Qian, Y. T. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012, 5, 477–485.

    Article  Google Scholar 

  13. Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angew. Chem., Int. Ed. 2016, 128, 12975–12980.

    Article  Google Scholar 

  14. Wu, J. X.; Qin, X. Y.; Zhang, H. R.; He, Y.-B.; Li, B. H.; Ke, L.; Lv, W.; Du, H. D.; Yang, Q.-H.; Kang, F. Y. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443.

    Article  Google Scholar 

  15. Wu, S. P.; Han, C. P.; Iocozzia, J.; Lu, M. J.; Ge, R. Y.; Xu, R.; Lin, Z. Q. Germanium-based nanomaterials for rechargeable batteries. Angew. Chem., Int. Ed. 2016, 55, 7898–7922.

    Article  Google Scholar 

  16. Yu, W. J.; Zhang, L. L.; Hou, P. X.; Li, F.; Liu, C.; Cheng, H. M. High reversible lithium storage capacity and structural changes of Fe2O3 nanoparticles confined inside carbon nanotubes. Adv. Energy Mater. 2016, 6, 1501755.

    Article  Google Scholar 

  17. Han, C. P.; Yang, D.; Yang, Y. K.; Jiang, B. B.; He, Y. J.; Wang, M. Y.; Song, A.-Y.; He, Y.-B.; Li, B. H.; Lin, Z. Q. Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mater. Chem. A 2015, 3, 13340–13349.

    Article  Google Scholar 

  18. Zhou, F.; Xin, S.; Liang, H.-W.; Song, L.-T.; Yu, S.-H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.

    Article  Google Scholar 

  19. Li, X. F.; Wang, C. L. Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J. Mater. Chem. A 2013, 1, 165–182.

    Article  Google Scholar 

  20. Yang, S. L.; Cao, C. Y.; Li, G.; Sun, Y. B.; Huang, P. P.; Wei, F. F.; Song, W. G. Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Res. 2015, 8, 1339–1347.

    Article  Google Scholar 

  21. Qin, X. Y.; Zhang, H. R.; Wu, J. X.; Chu, X. D.; He, Y.-B.; Han, C. P.; Miao, C.; Wang, S.; Li, B. H.; Kang, F. Y. Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 2015, 87, 347–356.

    Article  Google Scholar 

  22. Cheng, Y.-T.; Verbrugge, M. W. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 2008, 104, 083521.

    Article  Google Scholar 

  23. Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.

    Article  Google Scholar 

  24. Wang, Z. Y.; Luan, D. Y.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5, 5252–5256.

    Article  Google Scholar 

  25. He, Y.; Huang, L.; Cai, J.-S.; Zheng, X.-M.; Sun, S.-G. Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim. Acta 2010, 55, 1140–1144.

    Article  Google Scholar 

  26. Yu, W.-J.; Zhang, L. L.; Hou, P.-X.; Li, F.; Liu, C.; Cheng, H.-M. High reversible lithium storage capacity and structural changes of Fe2O3 nanoparticles confined inside carbon nanotubes. Adv. Energy Mater. 2016, 6, 1501755.

    Article  Google Scholar 

  27. Chen, X. H.; Lai, X.; Hu, J. H.; Wan, L. An easy and novel approach to prepare Fe3O4–reduced graphene oxide composite and its application for high-performance lithium-ion batteries. RSC Adv. 2015, 5, 62913–62920.

    Article  Google Scholar 

  28. Chen, Y.; Xia, H.; Lu, L.; Xue, J. M. Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J. Mater. Chem. 2012, 22, 5006–5012.

    Article  Google Scholar 

  29. Qu, Q. T.; Chen, J. M.; Li, X. X.; Gao, T.; Shao, J.; Zheng, H. H. Strongly coupled 1D sandwich-like C@Fe3O4@C coaxial nanotubes with ultrastable and high capacity for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 18289–18295.

    Article  Google Scholar 

  30. Xu, Y.; Feng, J. D.; Chen, X. C.; Kierzek, K.; Liu, W. B.; Tang, T.; Mijowska, E. Beaded structured CNTs-Fe3O4@C with low Fe3O4 content as anode materials with extra enhanced performances in lithium ion batteries. RSC Adv. 2015, 5, 28864–28869.

    Article  Google Scholar 

  31. Lee, S. H.; Yu, S. H.; Lee, J. E.; Jin, A. H.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. Y.; Kim, Y. W. et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.

    Article  Google Scholar 

  32. Zuo, Y. T.; Wang, G.; Peng, J.; Li, G.; Ma, Y. Q.; Yu, F.; Dai, B.; Guo, X. H.; Wong, C.-P. Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 2453–2460.

    Article  Google Scholar 

  33. Liu, J. L.; Qian, D.; Feng, H. B.; Li, J. H.; Jiang, J. B.; Peng, S. J.; Liu, Y. C. Designed synthesis of TiO2-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material. J. Mater. Chem. A 2014, 2, 11372–11381.

    Article  Google Scholar 

  34. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, e170–E192.

    Article  Google Scholar 

  35. Li, X. W.; Qiao, L.; Li, D.; Wang, X. H.; Xie, W. H.; He, D. Y. Three-dimensional network structured a-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J. Mater. Chem. A 2013, 1, 6400–6406.

    Article  Google Scholar 

  36. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218.

    Article  Google Scholar 

  37. Ding, C.; Zeng, Y. W.; Cao, L. L.; Zhao, L. F.; Meng, Q. Y. Porous Fe3O4-NCs-in-carbon nanofoils as high-rate and high-capacity anode materials for lithium-ion batteries from Na-citrate-mediated growth of super-thin Fe-ethylene glycolate nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 7977–7990.

    Article  Google Scholar 

  38. Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.

    Article  Google Scholar 

  39. Meunier, V.; Kephart, J.; Roland, C.; Bernholc, J. Ab Initio investigations of lithium diffusion in carbon nanotube systems. Phys. Rev. Lett. 2002, 88, 075506.

    Article  Google Scholar 

  40. Guo, C.; Wang, L. L.; Zhu, Y. C.; Wang, D. F.; Yang, Q. Q.; Qian, Y. T. Fe3O4 nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries. Nanoscale 2015, 7, 10123–10129.

    Article  Google Scholar 

  41. Mao, J. W.; Hou, X. H.; Wang, X. Y.; He, G. N.; Shao, Z. P.; Hu, S. J. Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv. 2015, 5, 31807–31814.

    Article  Google Scholar 

  42. Ma, F. X.; Hu, H.; Wu, H. B.; Xu, C. Y.; Xu, Z. C.; Zhen, L.; Lou, X. W. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 2015, 27, 4097–4101.

    Article  Google Scholar 

  43. Xia, T.; Xu, X. L.; Wang, J. P.; Xu, C. B.; Meng, F. C.; Shi, Z.; Lian, J.; Bassat, J.-M. Facile complex-coprecipitation synthesis of mesoporous Fe3O4 nanocages and their high lithium storage capacity as anode material for lithium-ion batteries. Electrochim. Acta 2015, 160, 114–122.

    Article  Google Scholar 

  44. He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.

    Article  Google Scholar 

  45. Meng, X. F.; Xu, Y. L.; Sun, X. F.; Wang, J.; Xiong, L. L.; Du, X. F.; Mao, S. C. Graphene oxide sheets-induced growth of nanostructured Fe3O4 for a high-performance anode material of lithium ion batteries. J. Mater. Chem. A 2015, 3, 12938–12946.

    Article  Google Scholar 

  46. Ma, F. X.; Wu, H. B.; Xu, C. Y.; Zhen, L.; Lou, X. W. Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties. Nanoscale 2015, 7, 4411–4414.

    Article  Google Scholar 

  47. Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3Os nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.

    Article  Google Scholar 

  48. Zhang, W.-M.; Wu, X.-L.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv.Funct. Mater. 2008, 18, 3941–3946.

    Article  Google Scholar 

  49. Lee, J. E.; Yu, S.-H.; Lee, D. J.; Lee, D.-C.; Han, S. I.; Sung, Y.-E.; Hyeon, T. Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ. Sci. 2012, 5, 9528–9533.

    Article  Google Scholar 

  50. Zhu, T.; Chen, J. S.; Lou, X. W. Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J. Phys. Chem. C 2011, 115, 9814–9820.

    Article  Google Scholar 

  51. Hu, Y. Y.; Liu, Z. G.; Nam, K. W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K. M.; Du, L. S. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136.

    Article  Google Scholar 

  52. Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with preencapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.

    Article  Google Scholar 

  53. Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Threedimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

    Article  Google Scholar 

  54. Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.

    Article  Google Scholar 

  55. Do, J.-S.; Weng, C.-H. Preparation and characterization of CoO used as anodic material of lithium battery. J. Power Sources 2005, 146, 482–486.

    Article  Google Scholar 

  56. Zhou, G. M.; Wang, D.-W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z.-S.; Wen, L.; Lu, G. Q.; Cheng, H.-M. Graphenewrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.

    Article  Google Scholar 

  57. Zhu, K.; Wang, Q.; Kim, J.-H.; Pesaran, A. A.; Frank, A. J. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J. Phys. Chem. C 2012, 116, 11895–11899.

    Article  Google Scholar 

  58. Adelhelm, P.; Hu, Y.-S.; Antonietti, M.; Maier, J.; Smarsly, B. M. Hollow Fe-containing carbon fibers with tubular tertiary structure: Preparation and Li-storage properties. J. Mater. Chem. 2009, 19, 1616–1620.

    Article  Google Scholar 

  59. Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717–723.

    Article  Google Scholar 

  60. Zhou, J. S.; Song, H. H.; Ma, L. L.; Chen, X. H. Magnetite/graphene nanosheet composites: Interfacial interaction and its impact on the durable high-rate performance in lithiumion batteries. RSC Adv. 2011, 1, 782–791.

    Article  Google Scholar 

  61. Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett. 2013, 13, 818–823.

    Article  Google Scholar 

  62. Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621–625.

    Article  Google Scholar 

  63. Zhukovskii, Y. F.; Balaya, P.; Kotomin, E. A.; Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 2006, 96, 058302.

    Article  Google Scholar 

  64. Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2014CB932400), Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Nos. U1330123 and U1401243), the National Natural Science Foundation of China (No. 51232005), and Shenzhen Technical Plan Project (No. JCYJ 20150529164918735).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianying Qin or Baohua Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Qin, X., Wu, J. et al. Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Res. 11, 892–904 (2018). https://doi.org/10.1007/s12274-017-1700-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1700-6

Keywords

Navigation