Skip to main content
Log in

Practical considerations of Si-based anodes for lithium-ion battery applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using Si-based anodes in Li-ion batteries is one of the most feasible approaches to achieve high energy densities despite their disadvantages, such as low conductivity and massive volume expansion, which cause unstable solid electrolyte interphase layers with mechanical failure. The forefront in research and development to address the above challenges suggests the possibility of fully commercially viable cells using various structural and interfacial modifications. In particular, we present a discussion of each dimension of Si-based anodes in multiple controlled systems, including plain, hollow, porous, and uniquely engineered structures, which are further evaluated based on their anode performances, such as initial reversibility, capacity retention for extended cycles with its efficiency, degree of volume expansion tolerance, and rate capabilities, by several practical standards in half cells. With these practical considerations, multi-dimensional structures with uniform size distributions (micrometers, on average) are strongly desired to satisfy the rigorous requirements for widespread applications. Furthermore, we closely examined several full cells composed of Si-based multicomponent anodes coupled with suitable cathodes based on practical standards to propose future research directions for Si-based anodes to keep pace with the rapidly changing market demands for diverse energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Croguennec, L.; Palacin, M. R. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156.

    Article  Google Scholar 

  2. Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380.

    Article  Google Scholar 

  3. Dunn, B; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  4. Erickson, E. M.; Ghanty, C.; Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 2014, 5, 3313–3324.

    Article  Google Scholar 

  5. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  6. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

    Article  Google Scholar 

  7. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  Google Scholar 

  8. Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872.

    Article  Google Scholar 

  9. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 461.

    Article  Google Scholar 

  10. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

    Article  Google Scholar 

  11. Dey, A. N. Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc. 1971, 118, 1547–1549.

    Article  Google Scholar 

  12. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    Article  Google Scholar 

  13. Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

    Article  Google Scholar 

  14. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  Google Scholar 

  15. Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

    Article  Google Scholar 

  16. Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 2004, 14, 1754–1758.

    Article  Google Scholar 

  17. Xiang, H. F.; Li, Z. D.; Xie, K.; Jiang, J. Z.; Chen, J. J.; Lian, P. C.; Wu, J. S.; Yu, Y.; Wang, H. H. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2012, 2, 6792–6799.

    Article  Google Scholar 

  18. Buiel, E.; Dahn, J. R. Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 1999, 45, 121–130.

    Article  Google Scholar 

  19. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 1999, 81-82, 13–19.

    Article  Google Scholar 

  20. Obrovac, M. N.; Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007, 154, A103–A108.

    Article  Google Scholar 

  21. Lee, J. K.; Oh, C.; Kim, N.; Hwang, J. Y.; Sun, Y. K. Rational design of silicon-based composites for high-energy storage devices. J. Mater. Chem. A 2016, 4, 5366–5384.

    Article  Google Scholar 

  22. Wang, J. J.; Xu, T. T.; Huang, X.; Li, H.; Ma, T. L. Recent progress of silicon composites as anode materials for secondary batteries. RSC Adv. 2016, 6, 87778–87790.

    Article  Google Scholar 

  23. Rahman, M. A.; Song, G. S.; Bhatt, A. I.; Wong, Y. C.; Wen, C. E. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647–678.

    Article  Google Scholar 

  24. Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.

    Article  Google Scholar 

  25. Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries. J. Power Sources 1997, 68, 87–90.

    Article  Google Scholar 

  26. Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earthabundant catalysts. Science 2011, 334, 645–648.

    Article  Google Scholar 

  27. Leblanc, D.; Hovington, P.; Kim, C.; Guerfi, A.; Bélanger, D.; Zaghib, K. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles. J. Power Sources 2015, 299, 529–536.

    Article  Google Scholar 

  28. Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106.

    Article  Google Scholar 

  29. Hirose, T.; Morishita, M.; Yoshitake, H.; Sakai, T. Study of structural changes that occurred during charge/discharge of carbon-coated SiO anode by nuclear magnetic resonance. Solid State Ionics 2017, 303, 154–160.

    Article  Google Scholar 

  30. Yamano, A.; Morishita, M.; Yanagida, M.; Sakai, T. Highcapacity Li-ion batteries using SiO-Si composite anode and Li-rich layered oxide cathode: Cell design and its safety evaluation. J. Electrochem. Soc. 2015, 162, A1730–A1737.

    Article  Google Scholar 

  31. Zhao, X.; Li, M. J.; Chang, K. H.; Lin, Y. M. Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res. 2014, 7, 1429–1438.

    Article  Google Scholar 

  32. Lee, J. H.; Yoon, C. S.; Hwang, J. Y.; Kim, S. J.; Maglia, F.; Lamp, P.; Myung, S. T.; Sun, Y. K. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 2016, 9, 2152–2158.

    Article  Google Scholar 

  33. Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J. M. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393.

    Article  Google Scholar 

  34. Huang, Y. L.; Hou, X. H.; Fan, X. Y.; Ma, S. M.; Hu, S. J.; Lam, K. H. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 2015, 182, 1175–1187.

    Article  Google Scholar 

  35. Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

    Article  Google Scholar 

  36. Yoo, H.; Lee, J. I.; Kim, H.; Lee, J. P.; Cho, J.; Park, S. Helical silicon/silicon oxide core-shell anodes grown onto the surface of bulk silicon. Nano Lett. 2011, 11, 4324–4328.

    Article  Google Scholar 

  37. Lee, J. I.; Lee, K. T.; Cho, J.; Kim, J.; Choi, N. S.; Park, S. Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems. Angew. Chem., Int. Ed. 2012, 51, 2767–2771.

    Article  Google Scholar 

  38. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Article  Google Scholar 

  39. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  40. Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548–8549.

    Article  Google Scholar 

  41. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

    Article  Google Scholar 

  42. Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261–268.

    Article  Google Scholar 

  43. Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

    Google Scholar 

  44. Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 2014, 14, 864–870.

    Article  Google Scholar 

  45. Kwon, T. W.; Jeong, Y. K.; Deniz, E.; AlQaradawi, S. Y.; Choi, J. W.; Coskun, A. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano 2015, 9, 11317–11324.

    Article  Google Scholar 

  46. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

    Article  Google Scholar 

  47. Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

    Article  Google Scholar 

  48. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  Google Scholar 

  49. Liu, N. A.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Article  Google Scholar 

  50. Lu, Z. D.; Liu, N.; Lee, H. W.; Zhao, J.; Li, W. Y.; Li, Y. Z.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540–2547.

    Article  Google Scholar 

  51. Huggins, R. A.; Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 2000, 6, 57–63.

    Article  Google Scholar 

  52. Ryu, I.; Lee, S. W.; Gao, H. J.; Cui, Y.; Nix, W. D. Microscopic model for fracture of crystalline Si nanopillars during lithiation. J. Power Sources 2014, 255, 274–282.

    Article  Google Scholar 

  53. Zhao, K. J.; Pharr, M.; Wan, Q.; Wang, W. L.; Kaxiras, E.; Vlassak, J. J.; Suo, Z. G. Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 2012, 159, A238–A243.

    Article  Google Scholar 

  54. Pharr, M.; Zhao, K. J.; Wang, X. W.; Suo, Z. G.; Vlassak, J. J. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett. 2012, 12, 5039–5047.

    Article  Google Scholar 

  55. Zhang, X. X.; Lee, S. W.; Lee, H.-W.; Cui, Y.; Linder, C. A reaction-controlled diffusion model for the lithiation of silicon in lithium-ion batteries. Extrem. Mech. Lett. 2015, 4, 61–75.

    Article  Google Scholar 

  56. Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2003, 2, 532–536.

    Article  Google Scholar 

  57. Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

    Article  Google Scholar 

  58. Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

    Article  Google Scholar 

  59. Lee, H. W.; Li, Y. Z.; Cui, Y. Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes. Curr. Opin. Chem. Eng. 2016, 12, 37–43.

    Article  Google Scholar 

  60. Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 2011, 11, 3034–3039.

    Article  Google Scholar 

  61. Goldman, J. L.; Long, B. R.; Gewirth, A. A.; Nuzzo, R. G. Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes. Adv. Funct. Mater. 2011, 21, 2412–2422.

    Article  Google Scholar 

  62. Lee, S. W.; McDowell, M. T.; Berla, L. A.; Nix, W. D.; Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 4080–4085.

    Article  Google Scholar 

  63. Chan, M. K. Y.; Long, B. R.; Gewirth, A. A.; Greeley, J. P. The first-cycle electrochemical lithiation of crystalline Ge: Dopant and orientation dependence and comparison with Si. J. Phys. Chem. Lett. 2011, 2, 3092–3095.

    Article  Google Scholar 

  64. Yang, H.; Fan, F. F.; Liang, W. T.; Guo, X.; Zhu, T.; Zhang, S. L. A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 2014, 70, 349–361.

    Article  Google Scholar 

  65. Ryu, I.; Choi, J. W.; Cui, Y.; Nix, W. D. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 2011, 59, 1717–1730.

    Article  Google Scholar 

  66. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

    Article  Google Scholar 

  67. Berla, L. A.; Lee, S. W.; Ryu, I.; Cui, Y.; Nix, W. D. Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. Power Sources 2014, 258, 253–259.

    Article  Google Scholar 

  68. Lee, S. W.; Lee, H. W.; Ryu, I.; Nix, W. D.; Gao, H. J.; Cui, Y. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 2015, 6, 7533.

    Article  Google Scholar 

  69. Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 2015, 8, 1224–1230.

    Article  Google Scholar 

  70. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8762–8767.

    Article  Google Scholar 

  71. Kwon, T. W.; Jeong, Y. K.; Lee, I.; Kim, T. S.; Choi, J. W.; Coskun, A. Systematic molecular-level design of binders incorporating Meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 2014, 26, 7979–7985.

    Article  Google Scholar 

  72. Liu, G.; Xun, S. D.; Vukmirovic, N.; Song, X. Y.; Olalde-Velasco, P.; Zheng, H. H.; Battaglia, V. S.; Wang, L. W.; Yang, W. L. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 2011, 23, 4679–4683.

    Article  Google Scholar 

  73. Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X. Y.; Yuca, N.; Battaglia, V. S.; Yang, W. L.; Liu, G. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2565–2571.

    Article  Google Scholar 

  74. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. A. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

    Article  Google Scholar 

  75. Shenoy, V. B.; Johari, P.; Qi, Y. Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: A first-principles study. J. Power Sources 2010, 195, 6825–6830.

    Article  Google Scholar 

  76. Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Srinivasan, V.; Guduru, P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 2010, 195, 5062–5066.

    Article  Google Scholar 

  77. Zhao, K. J.; Wang, W. L.; Gregoire, J.; Pharr, M.; Suo, Z. G.; Vlassak, J. J.; Kaxiras, E. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study. Nano Lett. 2011, 11, 2962–2967.

    Article  Google Scholar 

  78. Pharr, M.; Suo, Z. G.; Vlassak, J. J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. Nano Lett. 2013, 13, 5570–5577.

    Article  Google Scholar 

  79. Hatchard, T. D.; Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 2004, 151, A838–A842.

    Article  Google Scholar 

  80. Zeng, Z. D.; Liu, N. A.; Zeng, Q. S.; Lee, S. W.; Mao, W. L.; Cui, Y. In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 2016, 22, 105–110.

    Article  Google Scholar 

  81. Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J. M.; Grey, C. P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 2009, 131, 9239–9249.

    Article  Google Scholar 

  82. Liu, X. H.; Zheng, H.; Zhong, L.; Huan, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011, 11, 3312–3318.

    Article  Google Scholar 

  83. McDowell, M. T.; Lee, S. W.; Wang, C. M.; Cui, Y. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 2012, 1, 401–410.

    Article  Google Scholar 

  84. Liu, X. H.; Zhang, L. Q.; Zhong, L.; Liu, Y.; Zheng, H.; Wang, J. W.; Cho, J. H.; Dayeh, S. A.; Picraux, S. T.; Sullivan, J. P. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 2011, 11, 2251–2258.

    Article  Google Scholar 

  85. Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749–756.

    Article  Google Scholar 

  86. McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C. M.; Nix, W. D.; Cui, Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012, 24, 6034–6041.

    Article  Google Scholar 

  87. McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.

    Article  Google Scholar 

  88. Holtz, M. E.; Yu, Y. C.; Gao, J.; Abruña, H. D.; Muller, D. A. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 2013, 19, 1027–1035.

    Article  Google Scholar 

  89. Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.

    Article  Google Scholar 

  90. Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

    Article  Google Scholar 

  91. Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. F.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702–3713.

    Article  Google Scholar 

  92. Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

    Article  Google Scholar 

  93. Yang, L. Y.; Li, H. Z.; Liu, J.; Sun, Z. Q.; Tang, S. S.; Lei, M. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci. Rep. 2015, 5, 10908.

    Article  Google Scholar 

  94. Yoo, S.; Lee, J. I.; Ko, S.; Park, S. Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process. Nano Energy 2013, 2, 1271–1278.

    Article  Google Scholar 

  95. Park, O.; Lee, J. I.; Chun, M. J.; Yeon, J. T.; Yoo, S.; Choi, S.; Choi, N. S.; Park, S. High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Adv. 2013, 3, 2538–2542.

    Article  Google Scholar 

  96. Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

    Article  Google Scholar 

  97. Hwa, Y.; Kim, W. S.; Yu, B. C.; Hong, S. H.; Sohn, H. J. Mesoporous nano-Si anode for Li-ion batteries produced by magnesio-mechanochemical reduction of amorphous SiO2. Energy Technol. 2013, 1, 327–331.

    Article  Google Scholar 

  98. Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Musselinspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.

    Article  Google Scholar 

  99. Kambara, M.; Kitayama, A.; Homma, K.; Hideshima, T.; Kaga, M.; Sheem, K. Y.; Ishida, S.; Yoshida, T. Nanocomposite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J. Appl. Phys. 2014, 115, 143302.

    Article  Google Scholar 

  100. Shao, D.; Tang, D. P.; Mai, Y. J.; Zhang, L. Z. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J. Mater. Chem. A 2013, 1, 15068–15075.

    Article  Google Scholar 

  101. Park, H.; Choi, S.; Lee, S.; Hwang, G.; Choi, N. S.; Park, S. Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature. J. Mater. Chem. A 2015, 3, 1325–1332.

    Article  Google Scholar 

  102. Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409–2413.

    Article  Google Scholar 

  103. Choi, S.; Jung, D. S.; Choi, J. W. Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. Nano Lett. 2014, 14, 7120–7125.

    Article  Google Scholar 

  104. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

    Article  Google Scholar 

  105. Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437–1445.

    Article  Google Scholar 

  106. Lim, K. W.; Lee, J. I.; Yang, J.; Kim, Y. K.; Jeong, H. Y.; Park, S.; Shin, H. S. Catalyst-free synthesis of Si-SiOx core-shell nanowire anodes for high-rate and High-capacity lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6340–6345.

    Article  Google Scholar 

  107. Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420.

    Article  Google Scholar 

  108. Cho, J. H.; Picraux, S. T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett. 2013, 13, 5740–5747.

    Article  Google Scholar 

  109. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  110. Yao, Y.; Liu, N. A.; McDowell, M. T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927–7930.

    Article  Google Scholar 

  111. Yoo, S.; Lee, J. I.; Shin, M.; Park, S. Large-scale synthesis of interconnected Si/SiOx nanowire anodes for rechargeable lithium-ion batteries. ChemSusChem 2013, 6, 1153–1157.

    Article  Google Scholar 

  112. Kohandehghan, A.; Kalisvaart, P.; Kupsta, M.; Zahiri, B.; Amirkhiz, B. S.; Li, Z. P.; Memarzadeh, E. L.; Bendersky, L. A.; Mitlin, D. Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1600–1612.

    Article  Google Scholar 

  113. Ryu, J.; Choi, S.; Bok, T.; Park, S. Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Nanoscale 2015, 7, 6126–6135.

    Article  Google Scholar 

  114. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.

    Article  Google Scholar 

  115. Chen, Y.; Liu, L. F.; Xiong, J.; Yang, T. Z.; Qin, Y.; Yan, C. L. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 2015, 25, 6701–6709.

    Article  Google Scholar 

  116. Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452–5456.

    Article  Google Scholar 

  117. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

    Article  Google Scholar 

  118. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 2011, 133, 20914–20921.

    Article  Google Scholar 

  119. Ren, J. G.; Wang, C. D.; Wu, Q. H.; Liu, X.; Yang, Y.; He, L. F.; Zhang, W. J. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material. Nanoscale 2014, 6, 3353–3360.

    Article  Google Scholar 

  120. Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.

    Article  Google Scholar 

  121. Hu, L. B.; Wu, H.; Gao, Y. F.; Cao, A. Y.; Li, H. B.; McDough, J.; Xie, X.; Zhou, M.; Cui, Y. Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 2011, 1, 523–527.

    Article  Google Scholar 

  122. Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.

    Article  Google Scholar 

  123. Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@Carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691.

    Article  Google Scholar 

  124. Choi, S.; Lee, J. C.; Park, O.; Chun, M. J.; Choi, N. S.; Park, S. Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2013, 1, 10617–10621.

    Article  Google Scholar 

  125. McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395–1442.

    Article  Google Scholar 

  126. Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184–A1189.

    Article  Google Scholar 

  127. Maranchi, J. P.; Hepp, A. F.; Kumta, P. N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid State Lett. 2003, 6, A198–A201.

    Article  Google Scholar 

  128. Yu, C. J.; Li, X.; Ma, T.; Rong, J. P.; Zhang, R. J.; Shaffer, J.; An, Y. H.; Liu, Q.; Wei, B. Q.; Jiang, H. Q. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2012, 2, 68–73.

    Article  Google Scholar 

  129. Abel, P. R.; Lin, Y. M.; Celio, H.; Heller, A.; Mullins, C. B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. ACS Nano 2012, 6, 2506–2516.

    Article  Google Scholar 

  130. Ryu, J.; Hong, D.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 2016, 10, 2843–2851.

    Article  Google Scholar 

  131. Ryu, J.; Hong, D.; Shin, M.; Park, S. Multiscale hyperporous silicon flake anodes for high initial Coulombic efficiency and cycle stability. ACS Nano 2016, 10, 10589–10597.

    Article  Google Scholar 

  132. Kim, W. S.; Hwa, Y.; Shin, J. H.; Yang, M.; Sohn, H. J.; Hong, S. H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 2014, 6, 4297–4302.

    Article  Google Scholar 

  133. Wang, X. H.; Sun, L. M.; Hu, X. N.; Susantyoko, R. A.; Zhang, Q. Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 2015, 280, 393–396.

    Article  Google Scholar 

  134. Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

    Article  Google Scholar 

  135. Yu, X. H.; Xue, F. H.; Huang, H.; Liu, C. J.; Yu, J. Y.; Sun, Y. J.; Dong, X. L.; Cao, G. Z.; Jung, Y.. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale 2014, 6, 6860–6865.

    Article  Google Scholar 

  136. Lu, Z. Y.; Zhu, J. X.; Sim, D.; Zhou, W. W.; Shi, W. H.; Hng, H. H.; Yan, Q. Y. Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem. Mater. 2011, 23, 5293–5295.

    Article  Google Scholar 

  137. Wan, J. Y.; Kaplan, A. F.; Zheng, J.; Han, X. G.; Chen, Y. C.; Weadock, N. J.; Faenza, N.; Lacey, S.; Li, T.; Guo, J. et al. Two dimensional silicon nanowalls for lithium ion batteries. J. Mater. Chem. A 2014, 2, 6051–6057.

    Article  Google Scholar 

  138. Yi, R.; Dai, F.; Gordin, M. L.; Chen, S. R.; Wang, D. H. Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 2013, 3, 295–300.

    Article  Google Scholar 

  139. Bang, B. M.; Lee, J. I.; Kim, H.; Cho, J.; Park, S. Highperformance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2012, 2, 878–883.

    Article  Google Scholar 

  140. Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cyclelife lithium-ion batteries. Adv. Mater. 2014, 26, 4326–4332.

    Article  Google Scholar 

  141. Lee, J. I.; Kang, H.; Park, K. H.; Shin, M.; Hong, D.; Cho, H. J.; Kang, N. R.; Lee, J.; Lee, S. M.; Kim, J. Y. et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries. Small 2016, 12, 3119–3127.

    Article  Google Scholar 

  142. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N. S.; Park, S. Control of interfacial layers for highperformance porous Si lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 16360–16367.

    Article  Google Scholar 

  143. Luo, J. Y.; Zhao, X.; Wu, J. S.; Jang, H. D.; Kung, H. H.; Huang, J. X. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824–1829.

    Article  Google Scholar 

  144. Park, H.; Choi, S.; Lee, S. J.; Cho, Y. G.; Hwang, G.; Song, H. K.; Choi, N. S.; Park, S. Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability. Nano Energy 2016, 26, 192–199.

    Article  Google Scholar 

  145. Liu, W. R.; Guo, Z. Z.; Young, W. S.; Shieh, D. T.; Wu, H. C.; Yang, M. H.; Wu, N. L. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 2005, 140, 139–144.

    Article  Google Scholar 

  146. Bok, T.; Choi, S.; Lee, J.; Park, S. Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14195–14200.

    Article  Google Scholar 

  147. Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 2004, 7, A306–A309.

    Article  Google Scholar 

  148. Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N. A.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.

    Article  Google Scholar 

  149. Zhang, R. Y.; Du, Y. J.; Li, D.; Shen, D. K.; Yang, J. P.; Guo, Z. P.; Liu, H. K.; Elzatahry, A. A.; Zhao, D. Y. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv. Mater. 2014, 26, 6749–6755.

    Article  Google Scholar 

  150. Lee, J. I.; Choi, N. S.; Park, S. Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7878–7882.

    Article  Google Scholar 

  151. Hwang, G.; Park, H.; Bok, T.; Choi, S.; Lee, S.; Hwang, I.; Choi, N. S.; Seo, K.; Park, S. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation. Chem. Commun. 2015, 51, 4429–4432.

    Article  Google Scholar 

  152. Li, X. L.; Meduri, P.; Chen, X. L.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. M. et al. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 2012, 22, 11014–11017.

    Article  Google Scholar 

  153. Tao, H. C.; Fan, L. Z.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 2014, 6, 3138–3142.

    Article  Google Scholar 

  154. Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

    Google Scholar 

  155. Song, J. X.; Chen, S. R.; Zhou, M. J.; Xu, T.; Lv, D. P.; Gordin, M. L.; Long, T. J.; Melnyk, M.; Wang, D. H. Micro-sized silicon-carbon composites composed of carboncoated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 1257–1262.

    Article  Google Scholar 

  156. Kim, C.; Ko, M.; Yoo, S.; Chae, S.; Choi, S.; Lee, E. H.; Ko, S.; Lee, S. Y.; Cho, J.; Park, S. Novel design of ultra-fast Si anodes for Li-ion batteries: Crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale 2014, 6, 10604–10610.

    Article  Google Scholar 

  157. Jia, H. P.; Gao, P. F.; Yang, J.; Wang, J. L.; Nuli, Y.; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036–1039.

    Article  Google Scholar 

  158. Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-Coated three-dimensional macroporous Silicon. Adv. Mater. 2010, 22, 2247–2250.

    Article  Google Scholar 

  159. Choi, S.; Bok, T.; Ryu, J.; Lee, J. I.; Cho, J.; Park, S. Revisit of metallothermic reduction for macroporous Si: Compromise between capacity and volume expansion for practical Li-ion battery. Nano Energy 2015, 12, 161–168.

    Article  Google Scholar 

  160. Liu, N. A.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

    Article  Google Scholar 

  161. Bang, B. M.; Kim, H.; Song, H. K.; Cho, J.; Park, S. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energy Environ. Sci. 2011, 4, 5013–5019.

    Article  Google Scholar 

  162. Du, F. H.; Li, B.; Fu, W.; Xiong, Y. J.; Wang, K. X.; Chen, J. S. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with High structure stability. Adv. Mater. 2014, 26, 6145–6150.

    Article  Google Scholar 

  163. Lee, J. I.; Park, J. H.; Lee, S. Y.; Park, S. Surface engineering of sponge-like silicon particles for highperformance lithium-ion battery anodes. Phys. Chem. Chem. Phys. 2013, 15, 7045–7049.

    Article  Google Scholar 

  164. Zhang, H. G.; Braun, P. V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett. 2012, 12, 2778–2783.

    Article  Google Scholar 

  165. Kierzek, K.; Machnikowski, J. Factors influencing cyclelife of full Li-ion cell built from Si/C composite as anode and conventional cathodic material. Electrochim. Acta 2016, 192, 475–481.

    Article  Google Scholar 

  166. Lee, J. I.; Ko, Y.; Shin, M.; Song, H. K.; Choi, N. S.; Kim, M. G.; Park, S. High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy Environ. Sci. 2015, 8, 2075–2084.

    Article  Google Scholar 

  167. Ko, M.; Chae, S.; Ma, J. Y.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113.

    Article  Google Scholar 

  168. Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R. Towards high capacity Li-ion batteries based on silicon-graphene composite anodes and sub-micron V-doped LiFePO4 cathodes. Sci. Rep. 2016, 6, 37787.

    Article  Google Scholar 

  169. Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. A. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

    Article  Google Scholar 

  170. Wang, B.; Qiu, T. F.; Li, X. L.; Luo, B.; Hao, L.; Zhang, Y. B.; Zhi, L. J. Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. J. Mater. Chem. A 2015, 3, 494–498.

    Article  Google Scholar 

  171. Yi, R.; Zai, J. T.; Dai, F.; Gordin, M. L.; Wang, D. H. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 2014, 6, 211–218.

    Article  Google Scholar 

  172. Cho, W. C.; Kim, H. J.; Lee, H. I.; Seo, M. W.; Ra, H. W.; Yoon, S. J.; Mun, T. Y.; Kim, Y. K.; Kim, J. H.; Kim, B. H. et al. 5L-Scale magnesio-milling reduction of nanostructured SiO2 for high capacity silicon anodes in Lithium-ion batteries. Nano Lett. 2016, 16, 7261–7269.

    Article  Google Scholar 

  173. Favors, Z.; Wang, W.; Bay, H. H.; Mutlu, Z.; Ahmed, K.; Liu, C.; Ozkan, M.; Ozkan, C. S. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Sci. Rep. 2014, 4, 5623.

    Article  Google Scholar 

  174. Jung, D. S.; Ryou, M. H.; Sung, Y. J.; Park, S. B.; Choi, J. W. Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. USA. 2013, 110, 12229–12234.

    Article  Google Scholar 

  175. Wang, J.; Meng, X. C.; Fan, X. L.; Zhang, W. B.; Zhang, H. Y.; Wang, C. S. Scalable synthesis of defect abundant Si nanorods for high-performance Li-ion battery anodes. ACS Nano 2015, 9, 6576–6586.

    Article  Google Scholar 

  176. Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120–127.

    Article  Google Scholar 

  177. Zhang, Z. L.; Wang, Y. H.; Ren, W. F.; Tan, Q. Q.; Chen, Y. F.; Li, H.; Zhong, Z. Y.; Su, F. B. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem., Int. Ed. 2014, 53, 5265–5269.

    Article  Google Scholar 

  178. Zhu, B.; Jin, Y.; Tan, Y. L.; Zong, L. Q.; Hu, Y.; Chen, L.; Chen, Y. B.; Zhang, Q.; Zhu, J. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett. 2015, 15, 5750–5754.

    Article  Google Scholar 

  179. Liu, N. A.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 5, 6487–6493.

    Article  Google Scholar 

  180. Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 2013, 13, 4158–4163.

    Article  Google Scholar 

  181. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2016, 16, 282–288.

    Article  Google Scholar 

  182. Zhou, H. T.; Wang, X. H.; Chen, D. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries. ChemSusChem 2015, 8, 2737–2744.

    Article  Google Scholar 

  183. Zhao, J.; Lu, Z. D.; Wang, H. T.; Liu, W.; Lee, H. W.; Yan, K.; Zhuo, D.; Lin, D. C.; Liu, N. A.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372–8375.

    Article  Google Scholar 

  184. Zhao, J.; Lu, Z. D.; Liu, N. A.; Lee, H. W.; McDowell, M. T.; Cui, Y. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 2014, 5, 5088.

    Article  Google Scholar 

  185. Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

    Article  Google Scholar 

  186. Shim, J.; Striebel, K. A. The dependence of natural graphite anode performance on electrode density. J. Power Sources 2004, 130, 247–253.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2015R1A2A2A01003143). Lee Hyun-Wook acknowledges support from the Ministry of Trade, Industry & Energy/Korea Evaluation Institute of Industrial Technology (MOTIE/KEIT) (Development of design and fabrication technology of negative electrode having high energy density (700 mAh/cc) lithium-ion battery for EV battery, No. 10067185).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Wook Lee or Soojin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Hong, D., Lee, HW. et al. Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 10, 3970–4002 (2017). https://doi.org/10.1007/s12274-017-1692-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1692-2

Keywords

Navigation