Skip to main content
Log in

Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in microsized all-optical and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

    Article  Google Scholar 

  2. Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526.

    Article  Google Scholar 

  3. Fang, Y. R.; Sun, M. T. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light: Sci. Appl. 2015, 4, e294.

    Article  Google Scholar 

  4. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

    Article  Google Scholar 

  5. Chen, R.; Ng, K. W.; Ko, W. S.; Parekh, D.; Lu, F. L.; Tran, T.-T. D.; Li, K.; Chang-Hasnain, C. Nanophotonic integrated circuits from nanoresonators grown on silicon. Nat. Commun. 2014, 5, 4325.

    Article  Google Scholar 

  6. Zhao, Y.; Belkin, M. A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870.

    Article  Google Scholar 

  7. Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943.

    Article  Google Scholar 

  8. Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2015, 26, 1169–1177.

    Article  Google Scholar 

  9. Bao, Q. L.; Zhang, H.; Wang, B.; Ni, Z. H.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415.

    Article  Google Scholar 

  10. Tan, Y.; He, R. Y.; Cheng, C.; Wang, D.; Chen, Y. X.; Chen, F. Polarization-dependent optical absorption of MoS2 for refractive index sensing. Sci. Rep. 2014, 4, 7523

    Article  Google Scholar 

  11. De Oliveira, R. E. P.; De Matos, C. J. S. Graphene based waveguide polarizers: In-depth physical analysis and relevant parameters. Sci. Rep. 2015, 5, 16949.

    Article  Google Scholar 

  12. Yang, J.; Wang, Z.; Wang, F.; Xu, R. J.; Tao, J.; Zhang, S.; Qin, Q. H.; Luther-Davies, B.; Jagadish, C.; Yu, Z. F. et al. Atomically thin optical lenses and gratings. Light: Sci. Appl. 2016, 5, e16046.

    Article  Google Scholar 

  13. Grande, M.; Bianco, G. V.; Vincenti, M. A.; De Ceglia, D.; Capezzuto, P.; Scalora, M.; D’Orazio, A.; Bruno, G. Optically transparent microwave polarizer based on quasi-metallic graphene. Sci. Rep. 2015, 5, 17083.

    Article  Google Scholar 

  14. Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  Google Scholar 

  15. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  Google Scholar 

  16. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  17. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y.-W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/ angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  Google Scholar 

  18. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

    Article  Google Scholar 

  19. Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176–1181.

    Article  Google Scholar 

  20. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H. W.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

    Article  Google Scholar 

  21. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    Article  Google Scholar 

  22. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.

    Article  Google Scholar 

  23. Mao, N. N.; Wu, J. X.; Han, B. X.; Lin, J. J.; Tong, L. M.; Zhang, J. Birefringence-directed Raman selection rules in 2D black phosphorus crystals. Small 2016, 12, 2627–2633.

    Article  Google Scholar 

  24. Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

    Article  Google Scholar 

  25. Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Neto, A. H. C.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S. Edge phonons in black phosphorus. Nat. Commun. 2016, 7, 12191.

    Article  Google Scholar 

  26. Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Neto, A. H. C. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270–4276.

    Article  Google Scholar 

  27. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Article  Google Scholar 

  28. Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.

    Article  Google Scholar 

  29. Lu, J. P.; Yang, J.; Carvalho, A.; Liu, H. W.; Lu, Y. R.; Sow, C. H. Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806–1815.

    Article  Google Scholar 

  30. Zhang, G. W.; Huang, S. Y.; Chaves, A.; Song, C. Y.; Özçelik, V. O.; Low, T.; Yan, H. G. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 2017, 8, 14071.

    Article  Google Scholar 

  31. Hong, T.; Chamlagain, B.; Wang, T. J.; Chuang, H.-J.; Zhou, Z. X.; Xu, Y.-Q. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 2015, 7, 18537–18541.

    Article  Google Scholar 

  32. Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H.-J.; Pan, M. H.; Zhou, Z. X.; Xu, Y.-Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.

    Article  Google Scholar 

  33. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  Google Scholar 

  34. Wang, G. C.; Bao, L. H.; Pei, T. F.; Ma, R. S.; Zhang, Y.-Y.; Sun, L. L.; Zhang, G. Y.; Yang, H. F.; Li, J. J.; Gu, C. Z. et al. Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett. 2016, 16, 6870–6878.

    Article  Google Scholar 

  35. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z.-X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  Google Scholar 

  36. Sugai, S.; Ueda, T.; Murase, K. Pressure dependence of the lattice vibration in the orthorhombic and rhombohedral structures of black phosphorus. J. Phys. Soc. Jpn. 1981, 50, 3356–3361.

    Article  Google Scholar 

  37. Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080–4088.

    Article  Google Scholar 

Download references

Acknowledgements

J. Z. and L. T. acknowledge the funding from the National Natural Science Foundation of China (NSFC) (Nos. 21233001, 51272006, 11374355, and 21573004) and the National Basic Research Program of China (Nos. 2016YFA0200101, 2016YFA0200104, and 2015CB932400). H. X. acknowledges the funding of National Natural Science Foundation of China (No. 51502167). The authors thank X. L. for the constructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianming Tong or Jin Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, N., Zhang, S., Wu, J. et al. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 11, 3154–3163 (2018). https://doi.org/10.1007/s12274-017-1690-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1690-4

Keywords

Navigation