Skip to main content
Log in

Gold nanoshells: Contrast agents for cell imaging by cardiovascular optical coherence tomography

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) has gained considerable attention in interventional cardiovascular medicine and is currently used in clinical settings to assess atherosclerotic lesions and to optimize stent placement. Artery imaging at the cellular level constitutes the first step towards cardiovascular molecular imaging, which represents a major advance in the development of personalized noninvasive therapies. In this work, we demonstrate that cardiovascular OCT can be used to detect individual cells suspended in biocompatible fluids. Importantly, the combination of this catheter-based clinical technique with gold nanoshells (GNSs) as intracellular contrast agents led to a substantial enhancement in the backscattered signal produced by individual cells. This cellular contrast enhancement was attributed to the large backscattering cross-section of GNSs at the OCT laser wavelength (1,300 nm). A simple intensity analysis of OCT cross-sectional images of suspended cells makes it possible to identify the sub-population of living cells that successfully incorporated GNSs. The generalizability of this method was demonstrated using two different cell lines (HeLa and Jurkat cells). This work provides novel insights into cardiovascular molecular imaging using specifically modified GNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T. Optical coherence tomography-principles and applications. Rep. Prog. Phys. 2003, 66, 239–303.

    Article  Google Scholar 

  2. Alfonso, F.; Sandoval, J.; Cárdenas, A.; Medina, M.; Cuevas, C.; Gonzalo, N. Optical coherence tomography: From research to clinical application. Minerva Med. 2012, 103, 441–464.

    Google Scholar 

  3. Ashok, P. C.; Praveen, B. B.; Bellini, N.; Riches, A.; Dholakia, K.; Herrington, C. S. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon. Biomed. Opt. Express 2013, 4, 2179–2186.

    Article  Google Scholar 

  4. Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 2003, 21, 1361–1367.

    Article  Google Scholar 

  5. Mattison, S. P.; Kim, W.; Park, J.; Applegate, B. E. Molecular imaging in optical coherence tomography. Curr. Mol. Imaging 2014, 3, 88–105.

    Article  Google Scholar 

  6. Zysk, A. M.; Nguyen, F. T.; Oldenburg, A. L.; Marks, D. L.; Boppart, S. A. Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 2007, 12, 051403.

    Article  Google Scholar 

  7. Bouma, B. E.; Yun, S.-H.; Vakoc, B. J.; Suter, M. J.; Tearney, G. J. Fourier-domain optical coherence tomography: Recent advances toward clinical utility. Curr. Opin. Biotechnol. 2009, 20, 111–118.

    Article  Google Scholar 

  8. Kennedy, B. F.; Kennedy, K. M.; Oldenburg, A. L.; Adie, S. G.; Boppart, S. A.; Sampson, D. D. Optical coherence elastography. In Optical Coherence Tomography: Technology and Applications. Drexler, W.; Fujimoto, J. G., Eds.; Springer International Publishing: Switzerland, 2015; pp1007–1054.

    Chapter  Google Scholar 

  9. Alfonso, F.; Dutary, J.; Paulo, M.; Gonzalo, N.; Pérez-Vizcayno, M. J.; Jiménez-Quevedo, P.; Escaned, J.; Bañuelos, C.; Hernández, R.; Macaya, C. Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart 2012, 98, 1213–1220.

    Article  Google Scholar 

  10. Bezerra, H. G.; Costa, M. A.; Guagliumi, G.; Rollins, A. M.; Simon, D. I. Intracoronary optical coherence tomography: A comprehensive review: Clinical and research applications. JACC: Cardiovasc. Interv. 2009, 2, 1035–1046.

    Google Scholar 

  11. Prati, F.; Stazi, F.; Dutary, J.; La Manna, A.; Di Giorgio, A.; Pawlosky, T.; Gonzalo, N.; Di Salvo, M. E.; Imola, F.; Tamburino, C. et al. Detection of very early stent healing after primary angioplasty: An optical coherence tomographic observational study of chromium cobaltum and first-generation drug-eluting stents. The detective study. Heart 2011, 97, 1841–1846.

    Article  Google Scholar 

  12. Rivero, F.; Bastante, T.; Cuesta, J.; Benedicto, A.; Restrepo, J. A.; Alfonso, F. Treatment of in-stent restenosis with bioresorbable vascular scaffolds: Optical coherence tomography insights. Can. J. Cardiol. 2015, 31, 255–259.

    Article  Google Scholar 

  13. Douma, K.; Prinzen, L.; Slaaf, D. W.; Reutelingsperger, C. P. M.; Biessen, E. A. L.; Hackeng, T. M.; Post, M. J.; van Zandvoort, M. A. M. J. Nanoparticles for optical molecular imaging of atherosclerosis. Small 2009, 5, 544–557.

    Article  Google Scholar 

  14. Chen, J. Y.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z.-Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D. et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.

    Article  Google Scholar 

  15. Bibikova, O.; Popov, A.; Bykov, A.; Prilepskii, A.; Kinnunen, M.; Kordas, K.; Bogatyrev, V.; Khlebtsov, N.; Vainio, S.; Tuchin, V. Optical properties of plasmon-resonant bare and silica-coated nanostars used for cell imaging. J. Biomed. Opt. 2015, 20, 076017.

    Article  Google Scholar 

  16. Skrabalak, S. E.; Chen, J.; Au, L.; Lu, X.; Li, X.; Xia, Y. Gold nanocages for biomedical applications. Adv. Mater. 2007, 19, 3177–3184.

    Article  Google Scholar 

  17. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.

    Article  Google Scholar 

  18. Hu, J.; Rivero, F.; Torres, R. A.; Ramírez, H. L.; Rodríguez, E. M.; Alfonso, F.; Solé, J. G.; Jaque, D. Dynamic single gold nanoparticle visualization by clinical intracoronary optical coherence tomography. J. Biophotonics 2017, 10, 674–682.

    Article  Google Scholar 

  19. Skala, M. C.; Crow, M. J.; Wax, A.; Izatt, J. A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett. 2008, 8, 3461–3467.

    Article  Google Scholar 

  20. Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709–711.

    Article  Google Scholar 

  21. De León, Y. P.; Pichardo-Molina, J. L.; Ochoa, N. A.; Luna-Moreno, D. Contrast enhancement of optical coherence tomography images using branched gold nanoparticles. J. Nanomater. 2012, 2012, 571015.

    Google Scholar 

  22. De La Zerda, A.; Prabhulkar, S.; Perez, V. L.; Ruggeri, M.; Paranjape, A. S.; Habte, F.; Gambhir, S. S.; Awdeh, R. M. Optical coherence contrast imaging using gold nanorods in living mice eyes. Clin. Exp. Ophthalmol. 2015, 43, 358–366.

    Article  Google Scholar 

  23. Adler, D. C.; Huang, S.-W.; Huber, R.; Fujimoto, J. G. Photothermal detection of gold nanoparticles using phasesensitive optical coherence tomography. Opt. Express 2008, 16, 4376–4393.

    Article  Google Scholar 

  24. Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015, 8, 1771–1799.

    Article  Google Scholar 

  25. Masters, J. R. HeLa cells 50 years on: The good, the bad and the ugly. Nat. Rev. Cancer 2002, 2, 315–319.

    Article  Google Scholar 

  26. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63.

    Article  Google Scholar 

  27. Li, M.; Lohmüller, T.; Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Lett. 2015, 15, 770–775.

    Article  Google Scholar 

  28. Cui, Y.; Wang, X. L.; Ren, W.; Liu, J.; Irudayaraj, J. Optical clearing delivers ultrasensitive hyperspectral dark-field imaging for single-cell evaluation. ACS Nano 2016, 10, 3132–3143.

    Article  Google Scholar 

  29. Wax, A.; Sokolov, K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photonics Rev. 2009, 3, 146–158.

    Article  Google Scholar 

  30. Qian, W.; Huang, X. H.; Kang, B.; El-Sayed, M. A. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J. Biomed. Opt. 2010, 15, 046025.

    Article  Google Scholar 

  31. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodríguez, E. M.; Solé, J. G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Spanish Ministry of Economy and Competitiveness under Project No. MAT2016-75362-C3-1-R and by Instituto de Salud Carlos III under Project No. PI16/00812. Jie Hu acknowledges the scholarship from the China Scholarship Council (No. 201506650003). Dirk H. Ortgies is grateful to the Spanish Ministry of Economy and Competitiveness for a Juan de la Cierva scholarship (No. FJCI-2014-21101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Martín Rodríguez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Sanz-Rodríguez, F., Rivero, F. et al. Gold nanoshells: Contrast agents for cell imaging by cardiovascular optical coherence tomography. Nano Res. 11, 676–685 (2018). https://doi.org/10.1007/s12274-017-1674-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1674-4

Keywords

Navigation