Skip to main content
Log in

Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber gas sensors with single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), and ZnO quantum dot-decorated SWCNT (SWCNTs@ZnO) sensing elements. These flexible fiber gas sensors could be operated at room temperature to detect target gases with good sensitivity and recovery time. They also exhibited superior long-term stability, as well as good device mechanical bending ability and robustness. Integrating these flexible gas sensors into face masks, the fabricated wearable smart face masks could be used to selectively detect C2H5OH, HCHO, and NH3 by reading the corresponding LEDs with different colors. Such face masks have great potential application in the Internet of Things and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.

    Article  Google Scholar 

  2. Wang, L. L.; Ng, W. B.; Jackman, J. A.; Cho, N. J. Graphene-functionalized natural microcapsules: Modular building blocks for ultrahigh sensitivity bioelectronic platforms. Adv. Funct. Mater. 2016, 26, 2097–2103.

    Article  Google Scholar 

  3. Shen, G. Z.; Chen, P. C.; Ryu, K.; Zhou, C. W. Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 2009, 19, 828–839.

    Article  Google Scholar 

  4. Simo, A.; Mwakikunga, B.; Sone, B. T.; Julies, B.; Madjoe, R.; Maaza, M. VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing. Int. J. Hydrogen Energy 2014, 39, 8147–8157.

    Article  Google Scholar 

  5. Du, N.; Zhang, H.; Chen, B. D.; Ma, X. Y.; Liu, Z. H.; Wu, J. B.; Yang, D. R. Porous indium oxide nanotubes: Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater. 2007, 19, 1641–1645.

    Article  Google Scholar 

  6. Xu, L.; Dong, B.; Wang, Y.; Bai, X.; Liu, Q.; Song, H. W. Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens. Actuators B 2010, 147, 531–538.

    Article  Google Scholar 

  7. Al-Mashat, L.; Debiemme-Chouvy, C.; Borensztajn, S.; Wlodarski, W. Electropolymerized polypyrrole nanowires for hydrogen gas sensing. J. Phys. Chem. C 2012, 116, 13388–13394.

    Article  Google Scholar 

  8. Jang, J.; Chang, M.; Yoon, H. Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Adv. Mater. 2005, 17, 1616–1620.

    Article  Google Scholar 

  9. Navale, S. T.; Mane, A. T.; Khuspe, G. D.; Chougule, M. A.; Patil, V. B. Room temperature NO2 sensing properties of polythiophene films. Synth. Met. 2014, 195, 228–233.

    Article  Google Scholar 

  10. Huang, J. X.; Virji, S.; Weiller, B. H.; Kaner, R. B. Nanostructured polyaniline sensors. Chemistry 2004, 10, 1314–1319.

    Article  Google Scholar 

  11. Yi, W. J.; Wang, Y. Y.; Wang, G. F.; Tao, X. M. Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polym. Test. 2012, 31, 677–684.

    Article  Google Scholar 

  12. Lu, G. H.; Ocola, L. E.; Chen, J. H. Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 2009, 21, 2487–2491.

    Article  Google Scholar 

  13. Li, W. W.; Geng, X. M.; Guo, Y. F.; Rong, J. Z.; Gong, Y. P.; Wu, L. Q.; Zhang, X. M.; Li, P.; Xu, J. B.; Cheng, G. S. et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 2011, 5, 6955–6961.

    Article  Google Scholar 

  14. Wan, P.; Yang, W.; Wang, X. N.; Hu, J. M.; Zhang, H. Reduced graphene oxide modified with hierarchical flowerlike In(OH)3 for NO2 room-temperature sensing. Sens. Actuators B 2015, 214, 36–42.

    Article  Google Scholar 

  15. Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905–4917.

    Article  Google Scholar 

  16. Yun, Y. J.; Hong, W. G.; Choi, N. J.; Kim, B. H.; Jun, Y.; Lee, H. K. Ultrasensitive and highly selective graphenebased single yarn for use in wearable gas sensor. Sci. Rep. 2015, 5, 10904.

    Article  Google Scholar 

  17. Seesaard, T.; Seaon, S.; Khunarak, C.; Lorwongtragool, P.; Kerdcharoen, T. A novel creation of thread-based ammonia gas sensors for wearable wireless security system. In Proceedings of the 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Ratchasima, Thailand, 2015, pp 14–17.

    Google Scholar 

  18. Li, H. T.; Mu, X. Y.; Yang, Y. N.; Mason, A. J. Low power multimode electrochemical gas sensor array system for wearable health and safety monitoring. IEEE Sens. J. 2014, 14, 3391–3399.

    Article  Google Scholar 

  19. Tsow, F.; Forzani, E.; Rai, A.; Wang, R.; Tsui, R.; Mastroianni, S.; Knobbe, C.; Gandolfi, A. J.; Tao, N. J. A wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. IEEE Sens. J. 2009, 9, 1734–1740.

    Article  Google Scholar 

  20. Chatterjee, S.; Castro, M.; Feller, J. F. Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sens. Actuators B 2015, 220, 840–849.

    Article  Google Scholar 

  21. Li, Y.; Hodak M.; Lu, W. C.; Bernholc, J. Mechanisms of NH3 and NO2 detection in carbon-nanotube-based sensors: An ab initio investigation. Carbon 2016, 101, 177–183.

    Article  Google Scholar 

  22. Kauffman, D. R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem., Int. Ed. 2008, 47, 6550–6570.

    Article  Google Scholar 

  23. Wang, Y.; Yeow, J. T. W. A review of carbon nanotubesbased gas sensors. J. Sens. 2009, 2009, 493904.

    Article  Google Scholar 

  24. Zhou, Q. X.; Wang, C. Y.; Fu, Z. B.; Zhang, H.; Tang, Y. J. Adsorption of formaldehyde molecule on Al-doped vacancydefected single-walled carbon nanotubes: A theoretical study. Comput. Mater. Sci. 2014, 82, 337–344.

    Article  Google Scholar 

  25. Shi, D. W.; Wei, L. M.; Wang, J.; Zhao, J.; Chen, C. X.; Xu, D.; Geng, H. X.; Zhang, Y. F. Solid organic acid tetrafluorohydroquinone functionalized single-walled carbon nanotube chemiresistive sensors for highly sensitive and selective formaldehyde detection. Sens. Actuators B 2013, 177, 370–375.

    Article  Google Scholar 

  26. Hernández, S. C.; Kakoullis, J. Jr.; Lim, J. H.; Mubeen, S.; Hangarter, C. M.; Mulchandani, A.; Myung, N. V. Hybrid ZnO/SWNT nanostructures based gas sensor. Electroanalysis 2012, 24, 1613–1620.

    Article  Google Scholar 

  27. Shan, H.; Liu, C. B.; Liu, L.; Wang, L. Y.; Zhang, X. B.; Chi, X.; Bo, X. Q.; Wang, K. H. Excellent ethanol sensor based on multiwalled carbon nanotube-doped ZnO. Chin. Sci. Bull. 2014, 59, 374–378.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 61625404), the National Natural Science Foundation of China (Nos. 61504136 and 51672308), Beijing Natural Science Foundation (No. 4162062) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDY-SSW-JWC004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuoling Fu, Wei Han or Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Lou, Z., Chen, S. et al. Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res. 11, 511–519 (2018). https://doi.org/10.1007/s12274-017-1661-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1661-9

Keywords

Navigation