Skip to main content
Log in

Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to their inherent safety, low cost, and structural stability, TiO2 nanostructures represent a suitable choice as anode materials in sodium-ion batteries. In the recent years, various hypotheses have been proposed regarding the actual mechanism of the reversible insertion of sodium ions in the TiO2 structure, and previous reports are often controversial in this respect. Interestingly, when tested as binder- and conducting additive-free electrodes in laboratory-scale sodium cells, amorphous and crystalline (anatase) TiO2 nanotubular arrays obtained by simple anodic oxidation exhibit peculiar and intrinsically different electrochemical responses. In particular, after the initial electrochemical activation, anatase TiO2 shows excellent rate capability and very stable long-term cycling performance with larger specific capacities, and thus a clearly superior response compared with the amorphous counterpart. To obtain deeper insight, the present materials are thoroughly characterized by scanning electron microscopy and ex situ X-ray diffraction, and the insertion of sodium ions in the TiO2 bulk phases is systematically modeled by density functional theory calculations. The present results may contribute to the development of more systematic screening approaches to identify suitable active materials for highly efficient sodium-based energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823.

    Article  Google Scholar 

  2. Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

    Article  Google Scholar 

  3. Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454.

    Article  Google Scholar 

  4. Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095–10130.

    Article  Google Scholar 

  5. Zhao, Y.; Hoivik, N.; Wang, K. Y. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano Energy 2016, 30, 728–744.

    Article  Google Scholar 

  6. Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Cho, M. H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000–3009.

    Article  Google Scholar 

  7. Abdullah, N.; Kamarudin, S. K. Titanium dioxide in fuel cell technology: An overview. J. Power Sources 2015, 278, 109–118.

    Article  Google Scholar 

  8. Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

    Article  Google Scholar 

  9. Wang, X. D.; Li, Z. D.; Shi, J.; Yu, Y. H. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346–9384.

    Article  Google Scholar 

  10. Zhao, F. P.; Gong, Q. F.; Traynor, B.; Zhang, D.; Li, J. J.; Ye, H. L.; Chen, F. J.; Han, N.; Wang, Y. Y.; Sun, X. H. et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162–3170.

    Google Scholar 

  11. Shoaib, A.; Huang, Y. X.; Liu, J.; Liu, J. J.; Xu, M.; Wang, Z. H.; Chen, R. J.; Zhang, J. T.; Wu, F. Ultrathin singlecrystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. J. Power Sources 2017, 342, 405–413.

    Article  Google Scholar 

  12. Zhou, M.; Xu, Y.; Wang, C. L.; Li, Q. W.; Xiang, J. X.; Liang, L. Y.; Wu, M. H.; Zhao, H. P.; Lei, Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy 2017, 31, 514–524.

    Article  Google Scholar 

  13. Chen, J.; Zhang, Y.; Zou, G. Q.; Huang, Z. D.; Li, S. M.; Liao, H. X.; Wang, J. F.; Hou, H. S.; Ji, X. B. Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small 2016, 12, 5554–5563.

    Article  Google Scholar 

  14. Song, H.; Jo, K.; Jung, B. Y.; Jung, G. Y. Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 2014, 7, 104–109.

    Article  Google Scholar 

  15. Wang, B. F.; Zhao, F.; Du, G. D.; Porter, S.; Liu, Y.; Zhang, P.; Cheng, Z. X.; Liu, H. K.; Huang, Z. G. Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 16009–16015.

    Article  Google Scholar 

  16. Lee, J.; Lee, J. K.; Chung, K. Y.; Jung, H. G.; Kim, H.; Mun, J.; Choi, W. Electrochemical investigations on TiO2-B nanowires as a promising high capacity anode for sodiumion batteries. Electrochim. Acta 2016, 200, 21–28.

    Article  Google Scholar 

  17. Das, S. K.; Jache, B.; Lahon, H.; Bender, C. L.; Janek, J.; Adelhelm, P. Graphene mediated improved sodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte. Chem. Commun. 2016, 52, 1428–1431.

    Article  Google Scholar 

  18. Xiong, Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. J. Mater. Chem. A 2016, 4, 11351–11356.

    Article  Google Scholar 

  19. Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.

    Article  Google Scholar 

  20. Pintossi, D.; Iannaccone, G.; Colombo, A.; Bella, F.; Välimäki, M.; Väisänen, K. L.; Hast, J.; Levi, M.; Gerbaldi, C.; Dragonetti, C.et al. Luminescent downshifting by photoinduced sol-gel hybrid coatings: Accessing multifunctionality on flexible organic photovoltaics via ambient temperature material processing. Adv. Electron. Mater. 2016, 2, 1600288.

    Article  Google Scholar 

  21. Bella, F.; Galliano, S.; Falco, M.; Viscardi, G.; Barolo, C.; Grätzel, M.; Gerbaldi, C. Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chem. 2017, 19, 1043–1051.

    Article  Google Scholar 

  22. Bella, F.; Chiappone, A.; Nair, J. R.; Meligrana, G.; Gerbaldi, C. Effect of different green cellulosic matrices on the performance of polymeric dye-sensitized solar cells. Chem. Eng. Trans. 2014, 41, 211–216.

    Google Scholar 

  23. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  24. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  Google Scholar 

  25. Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M.; Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 9353–9378.

    Article  Google Scholar 

  26. Li, H. B.; Zhou, Q. Y.; Gao, Y. T.; Gui, X. C.; Yang, L.; Du, M. D.; Shi, E. Z.; Shi, J. D.; Cao, A. Y.; Fang, Y. Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Res. 2015, 8, 900–906.

    Article  Google Scholar 

  27. Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

    Article  Google Scholar 

  28. Xu, Y.; Zhou, M.; Lei, Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502514.

    Article  Google Scholar 

  29. Su, H.; Jaffer, S.; Yu, H. J. Transition metal oxides for sodium-ion batteries. Energy Storage Mater. 2016, 5, 116–131.

    Article  Google Scholar 

  30. Guo, S. H.; Yi, J.; Sun, Y.; Zhou, H. S. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 2016, 9, 2978–3006.

    Article  Google Scholar 

  31. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  32. Kim, H.; Yoon, G.; Park, I.; Hong, J.; Park, K. Y.; Kim, J.; Lee, K. S.; Sung, N. E.; Lee, S.; Kang, K. Highly stable ironand manganese-based cathodes for long-lasting sodium rechargeable batteries. Chem. Mater. 2016, 28, 7241–7249.

    Article  Google Scholar 

  33. Tsuchiya, Y.; Takanashi, K.; Nishinobo, T.; Hokura, A.; Yonemura, M.; Matsukawa, T.; Ishigaki, T.; Yamanaka, K.; Ohta, T.; Yabuuchi, N. Layered NaxCrxTi1–xO2 as bifunctional electrode materials for rechargeable sodium batteries. Chem. Mater. 2016, 28, 7006–7016.

    Article  Google Scholar 

  34. Cha, H. A.; Jeong, H. M.; Kang, J. K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 5182–5186.

    Article  Google Scholar 

  35. Gao, H.; Zhou, T. F.; Zheng, Y.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. Integrated carbon/red phosphorus/ graphene aerogel 3D architecture via advanced vaporredistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1601037.

    Article  Google Scholar 

  36. Wang, X. F.; Li, Y. J.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries. Nano Energy 2015, 13, 687–692.

    Article  Google Scholar 

  37. Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

    Article  Google Scholar 

  38. Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater. 2016, 6, 1600448.

    Article  Google Scholar 

  39. Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

    Article  Google Scholar 

  40. Ortiz, G. F.; Hanzu, I.; Djenizian, T.; Lavela, P.; Tirado, J. L.; Knauth, P. Alternative Li-ion battery electrode based on selforganized titania nanotubes. Chem. Mater. 2009, 21, 63–67.

    Article  Google Scholar 

  41. González, J. R.; Alcántara, R.; Ortiz, G. F.; Nacimiento, F.; Tirado, J. L. Controlled growth and application in lithium and sodium batteries of high-aspect-ratio, self-organized titania nanotubes. J. Electrochem. Soc. 2013, 160, A1390–A1398.

    Article  Google Scholar 

  42. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dyesensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74.

    Article  Google Scholar 

  43. Wu, L. M.; Buchholz, D.; Bresser, D.; Chagas, L. G.; Passerini, S. Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 2014, 251, 379–385.

    Article  Google Scholar 

  44. González, J. R.; Alcántara, R.; Nacimiento, F.; Ortiz, G. F.; Tirado, J. L. Self-organized, anatase, double-walled nanotubes prepared by anodization under voltage ramp as negative electrode for aqueous sodium-ion batteries. J. Electrochem. Soc. 2015, 162, A3007–A3012.

    Article  Google Scholar 

  45. Weadock, N.; Varongchayakul, N.; Wan, J. Y.; Lee, S.; Seog, J.; Hu, L. B. Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy. Nano Energy 2013, 2, 713–719.

    Article  Google Scholar 

  46. Lamberti, A.; Garino, N.; Sacco, A.; Bianco, S.; Chiodoni, A.; Gerbaldi, C. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim. Acta 2015, 151, 222–229.

    Article  Google Scholar 

  47. Yan, D.; Yu, C. Y.; Bai, Y.; Zhang, W. F.; Chen, T. Q.; Hu, B. W.; Sun, Z.; Pan, L. K. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 2015, 51, 8261–8264.

    Article  Google Scholar 

  48. Lamberti, A.; Garino, N.; Sacco, A.; Bianco, S.; Manfredi, D.; Gerbaldi, C. Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability. Electrochim. Acta 2013, 102, 233–239.

    Article  Google Scholar 

  49. Portenkirchner, E.; Neri, G.; Lichtinger, J.; Brumbarov, J.; Rüdiger, C.; Gernhäuser, R.; Kunze-Liebhäuser, J. Tracking areal lithium densities from neutron activation–quantitative Li determination in self-organized TiO2 nanotube anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 8602–8611.

    Article  Google Scholar 

  50. Prasai, B.; Cai, B.; Underwood, M. K.; Lewis, J. P.; Drabold, D. A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515–7521.

    Article  Google Scholar 

  51. Legrain, F.; Malyi, O.; Manzhos, S. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: A comparative first-principles study. J. Power Sources 2015, 278, 197–202.

    Article  Google Scholar 

  52. Anwar, T.; Wang, L.; Sagar, R. U. R.; Nosheen, F.; Singh, R.; Jafri, H. M.; Shehzad, K.; Liang, T. X. Cathodic titania nanotube arrays as anode material for lithium-ion batteries. J. Mater. Sci. 2017, 52, 4323–4332.

    Article  Google Scholar 

  53. El-Nahrawy, A. M.; Ali, A. I.; Hammad, A. B. A.; Youssef, A. M. Influences of Ag-NPs doping chitosan/calcium silicate nanocomposites for optical and antibacterial activity. Int. J. Biol. Macromol. 2016, 93, 267–275.

    Article  Google Scholar 

  54. Lu, Y.; Wang, T. Y.; Li, X. R.; Zhang, G. X.; Xue, H. G.; Pang, H. Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv. 2016, 6, 87188–87212.

    Article  Google Scholar 

  55. Hou, G. M.; Zhang, M. Q.; Huang, Y. F.; Ruan, W. H. A TiO2/PEO composite incorporated with in situ synthesized hyper-branched poly(amine-ester) and its application as a polymer electrolyte. RSC Adv. 2016, 6, 83406–83411.

    Article  Google Scholar 

  56. Zhou, X.; Obadia, M. M.; Venna, S. R.; Roth, E. A.; Serghei, A.; Luebke, D. R.; Myers, C.; Chang, Z. M.; Enick, R.; Drockenmuller, E. et al. Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. Eur. Polym. J. 2016, 84, 65–76.

    Google Scholar 

  57. Xu, S. S.; Wang, Y. H.; Zhao, Y.; Chen, W. L.; Wang, J. B.; He, L. F.; Su, Z. M.; Wang, E. B.; Kang, Z. H. Kepleratetype polyoxometalate/semiconductor composite electrodes with light-enhanced conductivity towards highly efficient photoelectronic devices. J. Mater. Chem. A 2016, 4, 14025–14032.

    Article  Google Scholar 

  58. Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892.

    Article  Google Scholar 

  59. Salvador, G. P.; Pugliese, D.; Bella, F.; Chiappone, A.; Sacco, A.; Bianco, S.; Quaglio, M. New insights in long-term photovoltaic performance characterization of cellulosebased gel electrolytes for stable dye-sensitized solar cells. Electrochim. Acta 2014, 146, 44‒51.

    Article  Google Scholar 

  60. Nair, J. R.; Porcarelli, L.; Bella, F.; Gerbaldi, C. Newly elaborated multipurpose polymer electrolyte encompassing RTILs for smart energy-efficient devices. ACS Appl. Mater. Interfaces 2015, 7, 12961‒12971.

    Article  Google Scholar 

  61. Bella, F.; Sacco, A.; Massaglia, G.; Chiodoni, A.; Pirri, C. F.; Quaglio, M. Dispelling clichés at the nanoscale: the true effect of polymer electrolytes on the performance of dye-sensitized solar cells. Nanoscale 2015, 7, 12010–12017.

    Article  Google Scholar 

  62. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  63. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  64. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  65. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    Article  Google Scholar 

  66. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  67. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  68. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  69. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  70. Ponti, G.; Palombi, F.; Abate, D.; Ambrosino, F.; Aprea, G.; Bastianelli, T.; Beone, F.; Bertini, R.; Bracco, G.; Caporicci, M. et al. The role of medium size facilities in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. In Proceedings of the 2014 International Conference on High Performance Computing and Simulation, Bologna, Italy, 2014, pp 1030–1033.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. Mauro Raimondo for the surface and cross-sectional FESEM/EDX analysis of the as-prepared samples. Prof. Drabold D. A. is kindly acknowledged for providing the amorphous TiO2 coordinates. The computing resources and the related technical support used for this work have been provided by CRESCO/ENEAGRID High Performance Computing infrastructure and its staff [70]. CRESCO/ ENEAGRID High Performance Computing infrastructure is funded by ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and by Italian and European research programs, see http://www.cresco.enea.it/english for information. Part of this work is carried out within the activities “Ricerca Sistema Elettrico” funded through contributions to research and development by the Italian Ministry of Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federico Bella or Claudio Gerbaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bella, F., Muñoz-García, A.B., Meligrana, G. et al. Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2 . Nano Res. 10, 2891–2903 (2017). https://doi.org/10.1007/s12274-017-1656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1656-6

Keywords

Navigation