Skip to main content
Log in

Chloride-intercalated continuous chemical vapor deposited graphene film with discrete adlayers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heteroatom doping can open the bandgap and increase the carrier density, thus extending the applications of graphene. Iron chloride (FeCl3) intercalation has proven to be an efficient method for the heavy doping of graphene. In this study, we prepared continuous chemical vapor deposited graphene (CVD-G) consisting of hexagonal adlayer domains to study the FeCl3 intercalation. The structure of the FeCl3-treated CVD-G was easily characterized via atomic force microscopy because of the change in the interlayer distance. FeCl3 crystals several nanometers thick were integrated with the graphene surface, and FeCl3 layer flakes were intercalated between the CVD-G adlayers. The G-band position and two-dimensional band shape in the Raman spectra confirmed the intercalation of the FeCl3 between the graphene layers. The FeCl3 intercalation increased the electrical conductivity of the CVD-G with a well-maintained transmittance, which could be beneficial for a sensitive photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herein, D.; Braun, T.; Schlögl, R. On the nature of the so-called iron-graphite. Carbon 1997, 35, 17–29.

    Article  Google Scholar 

  2. Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186.

    Article  Google Scholar 

  3. Hooley, J. G.; Bartlett, M. The intercalation isotherm of ferric chloride vapor on graphite from 300 to 350 °C. Carbon 1967, 5, 417–422.

    Article  Google Scholar 

  4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  5. Zhan, D.; Sun, L.; Ni, Z. H.; Liu, L.; Fan, X. F.; Wang, Y. Y.; Yu, T.; Lam, Y. M.; Huang, W.; Shen, Z. X. FeCl3-based few-layer graphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping. Adv. Funct. Mater. 2010, 20, 3504–3509.

    Article  Google Scholar 

  6. Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941–5946.

    Article  Google Scholar 

  7. Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.; Craciun, M. F. Novel highly conductive and transparent graphene-based conductors. Adv. Mater. 2012, 24, 2844–2849.

    Article  Google Scholar 

  8. Zou, X. Q.; Zhan, D.; Fan, X. F.; Lee, D.; Nair, S. K.; Sun, L.; Ni, Z. H.; Luo, Z. Q.; Liu, L.; Yu, T. et al. Ultrafast carrier dynamics in pristine and FeCl3-intercalated bilayer graphene. Appl. Phys. Lett. 2010, 97, 141910.

    Article  Google Scholar 

  9. Bointon, T. H.; Khrapach, I.; Yakimova, R.; Shytov, A. V.; Craciun, M. F.; Russo, S. Approaching magnetic ordering in graphene materials by FeCl3 intercalation. Nano Lett. 2014, 14, 1751–1755.

    Article  Google Scholar 

  10. Yang, J. W.; Lee, G.; Kim, J. S.; Kim, K. S. Gap opening of graphene by dual FeCl3-acceptor and K-donor doping. J. Phys. Chem. Lett. 2011, 2, 2577–2581.

    Article  Google Scholar 

  11. Nathaniel, J.; Wang, X.-Q. Tunable electron and hole doping in FeCl3 intercalated graphene. Appl. Phys. Lett. 2012, 100, 213112.

    Article  Google Scholar 

  12. Song, Y.; Fang, W. J.; Hsu, A. L.; Kong, J. Iron (III) chloride doping of CVD graphene. Nanotechnology 2014, 25, 395701.

    Article  Google Scholar 

  13. Bointon, T. H.; Jones, G. F.; De Sanctis, A.; Hill-Pearce, R.; Craciun, M. F.; Russo, S. Large-area functionalized CVD graphene for work function matched transparent electrodes. Sci. Rep. 2015, 5, 16464.

    Article  Google Scholar 

  14. Jiang, J. K.; Kang, J. H.; Cao, W.; Xie, X. J.; Zhang, H. J.; Chu, J. H.; Liu, W.; Banerjee, K. Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 2017, 17, 1482–1488,.

    Article  Google Scholar 

  15. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  16. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  17. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  18. Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Psriydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, largescale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136–11144.

    Article  Google Scholar 

  19. Hong, J. Y.; Kim, W.; Choi, D.; Kong, J.; Park, H. S. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 2016, 10, 9446–9455.

    Article  Google Scholar 

  20. Ding, D.; Solís-Fernández, P.; Hibino, H.; Ago, H. Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni. ACS Nano 2016, 10, 11196–11204.

    Article  Google Scholar 

  21. Lee, H. C.; Jo, S. B.; Lee, E.; Yoo, M. S.; Kim, H. H.; Lee, S. K.; Lee, W. H.; Cho, K. Facet-mediated growth of highquality monolayer graphene on arbitrarily rough copper surfaces. Adv. Mater. 2016, 28, 2010–2017.

    Article  Google Scholar 

  22. Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

    Article  Google Scholar 

  23. Matsumoto, R.; Okabe, Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets. Synthetic Met. 2016, 212, 62–68.

    Article  Google Scholar 

  24. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  25. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  26. Underhill, C.; Leung, S. Y.; Dresselhaus, G.; Dresselhaus, M. S. Infrared and Raman spectroscopy of graphite-ferric chloride. Solid State Commun. 1979, 29, 769–774.

    Article  Google Scholar 

  27. Caswell, N.; Solin, S. A. Vibrational excitations of pure FeCl3 and graphite intercalated with ferric chloride. Solid State Commun. 1978, 27, 961–967.

    Article  Google Scholar 

  28. Chacón-Torres, J. C.; Wirtz, L.; Pichler, T. Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron–phonon coupling in graphene layers. Phys. Status Solidi B 2014, 251, 2337–2355.

    Article  Google Scholar 

  29. Torres Alonso, E.; Karkera, G.; Jones, G. F.; Craciun, M. F.; Russo, S. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Appl. Mater. Interfaces 2016, 8, 16541–16545.

    Article  Google Scholar 

  30. Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

    Article  Google Scholar 

  31. Han, W.-P.; Li, Q.-Q.; Lu, Y.; Yan, X.; Zhao, H.; Long, Y.-Z. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl3 intercalation compounds. AIP Adv. 2016, 6, 075219.

    Article  Google Scholar 

  32. Kim, N.; Kim, K. S.; Jung, N.; Brus, L.; Kim, P. Synthesis and electrical characterization of magnetic bilayer graphene intercalate. Nano Lett. 2011, 11, 860–865.

    Article  Google Scholar 

  33. Li, Q. Y.; Chou, H.; Zhong, J.-H.; Liu, J.-Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. H.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490.

    Article  Google Scholar 

  34. Wang, Z.-J.; Dong, J. C.; Cui, Y.; Eres, G.; Timpe, O.; Fu, Q.; Ding, F.; Schloegl, R.; Willinger, M.-G. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 2016, 7, 13256.

    Article  Google Scholar 

  35. Boothroyd, C. B.; Moreno, M. S.; Duchamp, M.; Kovács, A.; Monge, N.; Morales, G. M.; Barbero, C. A.; Dunin-Borkowski, R. E. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy 2014, 145, 66–73.

    Article  Google Scholar 

  36. Wehenkel, D. J.; Bointon, T. H.; Booth, T.; Bøggild, P.; Craciun, M. F.; Russo, S. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene. Sci. Rep. 2015, 5, 7609.

    Article  Google Scholar 

  37. Begin, D.; Alain, E.; Furdin, G.; Mareche, J. F.; Delcroix, P.; Le Caer, G. Carbonization of mixtures of coal tar pitch and graphite FeCl3 compounds. A mössbauer study. Carbon 1996, 34, 331–337.

    Article  Google Scholar 

  38. Ni, Z. H.; Wang, H. M.; Luo, Z. Q.; Wang, Y. Y.; Yu, T.; Wu, Y. H.; Shen, Z. X. The effect of vacuum annealing on graphene. J. Raman Spectrosc. 2010, 41, 479–483.

    Article  Google Scholar 

  39. Withers, F.; Bointon, T. H.; Craciun, M. F.; Russo, S. Allgraphene photodetectors. ACS Nano 2013, 7, 5052–5057.

    Article  Google Scholar 

  40. Liu, W.; Kang, J.; Banerjee, K. Characterization of FeCl3 intercalation doped CVD few-layer graphene. IEEE Electron Device Lett. 2016, 37, 1246–1249.

    Article  Google Scholar 

  41. Günes, F.; Shin, H. J.; Biswas, C.; Han, G. H.; Kim, E. S.; Chae, S. J.; Choi, J. Y.; Lee, Y. H. Layer-by-layer doping of few-layer graphene film. ACS Nano 2010, 4, 4595–4600.

    Article  Google Scholar 

  42. Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595–601.

    Article  Google Scholar 

  43. Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-onsilicon schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748.

    Article  Google Scholar 

  44. Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528.

    Article  Google Scholar 

  45. Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51372133 and 51672150) and China Postdoctoral Science Foundation (No. 2015M571019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, L. & Zhu, H. Chloride-intercalated continuous chemical vapor deposited graphene film with discrete adlayers. Nano Res. 11, 440–448 (2018). https://doi.org/10.1007/s12274-017-1651-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1651-y

Keywords

Navigation