Skip to main content
Log in

Recent advances in gas-involved in situ studies via transmission electron microscopy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gases that are widely used in research and industry have a significant effect on both the configuration of solid materials and the evolution of reactive systems. Traditional studies on gas–solid interactions have mostly been static and post-mortem and unsatisfactory for elucidating the real active states during the reactions. Recent developments of controlled-atmosphere transmission electron microscopy (TEM) have led to impressive progress towards the simulation of real-world reaction environments, allowing the atomic-scale recording of dynamic events. In this review, on the basis of the in situ research of our group, we outline the principles and features of the controlled-atmosphere TEM techniques and summarize the significant recent progress in the research activities on gas–solid interactions, including nanowire growth, catalysis, and metal failure. Additionally, the challenges and opportunities in the real-time observations on such platform are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, M. S.; Goodman, D. W. Promotional effects of Au in Pd-Au catalysts for vinyl acetate synthesis. Chinese J. Catal. 2008, 29, 1178–1186.

    Article  Google Scholar 

  2. Edwards, J. K.; Freakley, S. J.; Lewis, R. J.; Pritchard, J. C.; Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 2015, 248, 3–9.

    Article  Google Scholar 

  3. Keav, S.; Matam, S. K.; Ferri, D.; Weidenkaff, A. Structured perovskite-based catalysts and their application as three-way catalytic converters—A review. Catalysts 2014, 4, 226–255.

    Article  Google Scholar 

  4. Wang, J. H.; Chen, H.; Hu, Z. C.; Yao, M. F.; Li, Y. D. A review on the Pd-based three-way catalyst. Catal. Rev. 2015, 57, 79–144.

    Article  Google Scholar 

  5. Minh, N. Q. Ceramic fuel-cells. J. Am. Ceram. Soc. 1993, 76, 563–588.

    Article  Google Scholar 

  6. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104, 4791–4844.

    Article  Google Scholar 

  7. Mirzaei, A.; Janghorban, K.; Hashemi, B.; Neri, G. Metalcore@ metal oxide-shell nanomaterials for gas-sensing applications: A review. J. Nanopart. Res. 2015, 17, 371.

    Article  Google Scholar 

  8. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

    Article  Google Scholar 

  9. Klenowicz, Z.; Darowicki, K. Waste incinerators: Corrosion problems and construction materials: A review. Corros. Rev. 2001, 19, 467–491.

    Article  Google Scholar 

  10. Venezuela, J.; Liu, Q. L.; Zhang, M. X.; Zhou, Q. J.; Atrens, A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev. 2016, 34, 153–186.

    Article  Google Scholar 

  11. Ren, J. T.; Tilley, R. D. Shape-controtled growth of platinum nanoparticles. Small 2007, 3, 1508–1512.

    Article  Google Scholar 

  12. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  13. Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

    Article  Google Scholar 

  14. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1925.

    Article  Google Scholar 

  15. Mtangi, W.; Auret, F. D.; Meyer, W. E.; Legodi, M. J.; van Rensburg, P. J. J.; Coelho, S. M. M.; Diale, M.; Nel, J. M. Effects of hydrogen, oxygen, and argon annealing on the electrical properties of ZnO and ZnO devices studied by current-voltage, deep level transient spectroscopy, and Laplace DLTS. J. Appl. Phys. 2012, 111, 094504.

    Article  Google Scholar 

  16. Yu, W. Y.; Zhang, L.; Mullen, G. M.; Evans, E. J., Jr.; Henkelman, G.; Mullins, C. B. Effect of annealing in oxygen on alloy structures of Pd-Au bimetallic model catalysts. Phys. Chem. Chem. Phys. 2015, 17, 20588–20596.

    Article  Google Scholar 

  17. Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 2000, 287, 1474–1476.

    Article  Google Scholar 

  18. Yamauchi, M.; Tsukuda, T. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere. Dalton Trans. 2011, 40, 4842–4845.

    Article  Google Scholar 

  19. Mouaddib, N.; Feumi-Jantou, C.; Garbowski, E.; Primet, M. Catalytic oxidation of methane over palladium supported on alumina: Influence of the oxygen-to-methane ratio. Appl. Catal. A-Gen. 1992, 87, 129–144.

    Article  Google Scholar 

  20. Vendelbo, S. B.; Elkjær, C. F.; Falsig, H.; Puspitasari, I.; Dona, P.; Mele, L.; Morana, B.; Nelissen, B. J.; van Rijn, R.; Creemer, J. F. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 2014, 13, 884–890.

    Article  Google Scholar 

  21. Fujita, T.; Tokunaga, T.; Zhang, L.; Li, D. W.; Chen, L. Y.; Arai, S.; Yamamoto, Y.; Hirata, A.; Tanaka, N.; Ding, Y. et al. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold. Nano Lett. 2014, 14, 1172–1177.

    Article  Google Scholar 

  22. Sinclair, R. In situ high-resolution transmission electron microscopy of material reactions. MRS Bull. 2013, 38, 1065–1071.

    Article  Google Scholar 

  23. van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.; Vanmaekelbergh, D. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959–3963.

    Article  Google Scholar 

  24. Jiang, Y.; Wang, Y.; Zhang, Y. Y.; Zhang, Z. F.; Yuan, W. T.; Sun, C. H.; Wei, X.; Brodsky, C. N.; Tsung, C. K.; Li, J. X. et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der waals interactions. Nano Res. 2014, 7, 308–314.

    Article  Google Scholar 

  25. Benavidez, A. D.; Kovarik, L.; Genc, A.; Agrawal, N.; Larsson, E. M.; Hansen, T. W.; Karim, A. M.; Datye, A. K. Environmental transmission electron microscopy study of the origins of anomalous particle size distributions in supported metal catalysts. ACS Catal. 2012, 2, 2349–2356.

    Article  Google Scholar 

  26. Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

    Article  Google Scholar 

  27. Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749–756.

    Article  Google Scholar 

  28. Meister, S.; Kim, S.; Cha, J. J.; Wong, H. S. P.; Cui, Y. In situ transmission electron microscopy observation of nanostructural changes in phase-change memory. ACS Nano 2011, 5, 2742–2748.

    Article  Google Scholar 

  29. Han, X. D.; Zheng, K.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Wang, Z. L. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 2007, 19, 2112–2118.

    Article  Google Scholar 

  30. Liu, P.; Mao, S. C.; Wang, L. H.; Han, X. D.; Zhang, Z. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr. Mater. 2011, 64, 343–346.

    Article  Google Scholar 

  31. Wang, L. H.; Liu, P.; Guan, P. F.; Yang, M. J.; Sun, J. L.; Cheng, Y. Q.; Hirata, A.; Zhang, Z.; Ma, E.; Chen, M. W. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 2013, 4, 2413.

    Google Scholar 

  32. Yue, Y. H.; Chen, N. K.; Li, X. B.; Zhang, S. B.; Zhang, Z.; Chen, M. W.; Han, X. D. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 2013, 13, 3812–3816.

    Article  Google Scholar 

  33. Zhang, Y.; Han, X.; Zheng, K.; Zhang, Z.; Zhang, X.; Fu, J.; Ji, Y.; Hao, Y.; Guo, X.; Wang, Z. L. Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 2007, 17, 3435–3440.

    Article  Google Scholar 

  34. Zheng, K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 24.

    Google Scholar 

  35. Marton, L. La microscopie electronique des objets biologiques. Bull. Acad. R. Belg. Cl. Sci. 1935, 21, 553–564.

    Google Scholar 

  36. Flower, H. M. High-voltage electron-microscopy of environmental reactions. J. Microsc. 1973, 97, 171–190.

    Article  Google Scholar 

  37. Sharma, R.; Crozier, P. A. Environmental transmission electron microscopy in nanotechnology. In Handbook of Microscopy for Nanotechnology; Yao, N.; Wang, Z. L., Eds.; Springer: New York, 2005; pp 531–565.

    Chapter  Google Scholar 

  38. Gai, P. L.; Boyes, E. D.; Helveg, S.; Hansen, P. L.; Giorgio, S.; Henry, C. R. Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 2007, 32, 1044–1050.

    Article  Google Scholar 

  39. Tao, F. F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.

    Article  Google Scholar 

  40. Jinschek, J. R. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem. Commun. 2014, 50, 2696–2706.

    Article  Google Scholar 

  41. Takeda, S.; Yoshida, H. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science. Microscopy 2013, 62, 193–203.

    Article  Google Scholar 

  42. Zhang, S. R.; Nguyen, L.; Zhu, Y.; Zhan, S. H.; Tsung, C. K.; Tao, F. In-situ studies of nanocatalysis. Acc. Chem. Res. 2013, 46, 1731–1739.

    Article  Google Scholar 

  43. Hansen, T. W.; Wagner, J. B. Controlled Atmosphere Transmission Electron Microscopy; Springer International Publishing: Switzerland, 2016.

    Book  Google Scholar 

  44. Taheri, M. L.; Stach, E. A.; Arslan, I.; Crozier, P. A.; Kabius, B. C.; LaGrange, T.; Minor, A. M.; Takeda, S.; Tanase, M.; Wagner, J. B. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016, 170, 86–95.

    Article  Google Scholar 

  45. Alsem, D.; Salmon, N. J.; Unocic, R. R.; Veith, G. M.; More, K. L. In-situ liquid and gas transmission electron microscopy of nano-scale materials. Microsc. Microanal. 2012, 18, 1158–1159.

    Article  Google Scholar 

  46. Panciera, F.; Norton, M. M.; Alam, S. B.; Hofmann, S.; Mølhave, K.; Ross, F. M. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet. Nat. Commun. 2016, 7, 12271.

    Article  Google Scholar 

  47. Ross, F. M. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 2010, 73, 114501.

    Article  Google Scholar 

  48. Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

    Article  Google Scholar 

  49. Malladi, S.; Shen, C. G.; Xu, Q.; de Kruijff, T.; Yücelen, E.; Tichelaar, F.; Zandbergen, H. Localised corrosion in aluminium alloy 2024-T3 using in situ TEM. Chem. Commun. 2013, 49, 10859–10861.

    Article  Google Scholar 

  50. Xie, D. G.; Wang, Z. J.; Sun, J.; Li, J.; Ma, E.; Shan, Z. W. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 2015, 14, 899–903.

    Article  Google Scholar 

  51. Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

    Article  Google Scholar 

  52. Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2016, 15, 768–774.

    Article  Google Scholar 

  53. Crozier, P. A.; Sharma, R.; Datye, A. K. Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 1998, 4, 278–285.

    Article  Google Scholar 

  54. Koh, A. L.; Gidcumb, E.; Zhou, O.; Sinclair, R. Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope. ACS Nano 2013, 7, 2566–2572.

    Article  Google Scholar 

  55. Sun, L.; Noh, K. W.; Wen, J.-G.; Dillon, S. J. In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas. Langmuir 2011, 27, 14201–14206.

    Article  Google Scholar 

  56. Yokosawa, T.; Tichelaar, F. D.; Zandbergen, H. W. In-situ TEM on epitaxial and non-epitaxial oxidation of Pd and reduction of PdO at P = 0.2–0.7 bar and T = 20–650 °C. Eur. J. Inorg. Chem. 2016, 2016, 3094–3102.

    Article  Google Scholar 

  57. Yoshida, H.; Omote, H.; Takeda, S. Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy. Nanoscale 2014, 6, 13113–13118.

    Article  Google Scholar 

  58. Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Saidi, W. A.; Yang, J. C. In situ atomic-scale visualization of oxide islanding during oxidation of Cu surfaces. Chem. Commun. 2013, 49, 10862–10864.

    Article  Google Scholar 

  59. LaGrow, A. P.; Ward, M. R.; Lloyd, D. C.; Gai, P. L.; Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 2017, 139, 179–185.

    Article  Google Scholar 

  60. Zhang, X. F.; Kamino, T. Imaging gas–solid interactions in an atomic resolution environmental TEM. Microsc. Today 2006, 14, 16–18.

    Google Scholar 

  61. Boyes, E. D.; Gai, P. L. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 1997, 67, 219–232.

    Article  Google Scholar 

  62. Gai, P. L.; Kourtakis, K.; Ziemecki, S. In situ real-time environmental high resolution electron microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in Nylon 6, 6. Microsc. Microanal. 2000, 6, 335–342.

    Article  Google Scholar 

  63. Kamino, T.; Yaguchi, T.; Konno, M.; Watabe, A.; Marukawa, T.; Mima, T.; Kuroda, K.; Saka, H.; Arai, S.; Makino, H. et al. Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron Microsc. 2005, 54, 497–503.

    Article  Google Scholar 

  64. Jinschek, J. R.; Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 2012, 43, 1156–1168.

    Article  Google Scholar 

  65. Creemer, J. F.; Helveg, S.; Hoveling, G. H.; Ullmann, S.; Molenbroek, A. M.; Sarro, P. M.; Zandbergen, H. W. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 2008, 108, 993–998.

    Article  Google Scholar 

  66. Pérez Garza, H. H.; Morsink, D.; Xu, J.; Sholkina, M.; Pivak, Y.; Pen, M.; van Weperen, S.; Xu, Q. MEMS-based nanoreactor for in situ analysis of solid–gas interactions inside the transmission electron microscope. Micro Nano Lett. 2017, 12, 69–75.

    Article  Google Scholar 

  67. Li, D. S.; Nielsen, M. H.; De Yoreo, J. J. Design, fabrication, and applications of in situ fluid cell TEM. In Research Methods in Biomineralization Science; De Yoreo, J. J., Ed.; Academic Press Inc.: San Diego, 2013; pp 147–164.

    Chapter  Google Scholar 

  68. de Jonge, N.; Pfaff, M.; Peckys, D. B. Practical aspects of transmission electron microscopy in liquid. In Advances in Imaging and Electron Physics; Hawkes, P. W., Ed.; Academic Press Inc.: San Diego, 2014; Vol. 186, pp 1–37.

    Google Scholar 

  69. Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.

    Article  Google Scholar 

  70. de Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704.

    Article  Google Scholar 

  71. Yokosawa, T.; Alan, T.; Pandraud, G.; Dam, B.; Zandbergen, H. In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400 °C. Ultramicroscopy 2012, 112, 47–52.

    Article  Google Scholar 

  72. Yaguchi, T.; Suzuki, M.; Watabe, A.; Nagakubo, Y.; Ueda, K.; Kamino, T. Development of a high temperatureatmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. 2011, 60, 217–225.

    Article  Google Scholar 

  73. Giorgio, S.; Sao Joao, S.; Nitsche, S.; Chaudanson, D.; Sitja, G.; Henry, C. R. Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 2006, 106, 503–507.

    Article  Google Scholar 

  74. de Jonge, N.; Bigelow, W. C.; Veith, G. M. Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 2010, 10, 1028–1031.

    Article  Google Scholar 

  75. Xin, H. L.; Niu, K. Y.; Alsem, D. H.; Zheng, H. M. In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 2013, 19, 1558–1568.

    Article  Google Scholar 

  76. Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P. H.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470–478.

    Article  Google Scholar 

  77. Alan, T.; Yokosawa, T.; Gaspar, J.; Pandraud, G.; Paul, O.; Creemer, F.; Sarro, P. M.; Zandbergen, H. W. Microfabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett. 2012, 100, 081903.

    Article  Google Scholar 

  78. Ueda, K.; Kawasaki, T.; Hasegawa, H.; Tanji, T.; Ichihashi, M. First observation of dynamic shape changes of a gold nanoparticle catalyst under reaction gas environment by transmission electron microscopy. Surf. Interface Anal. 2008, 40, 1725–1727.

    Article  Google Scholar 

  79. Yang, J. L.; Paul, O. Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sensor. Actuat. A-Phys. 2002, 97–98, 520–526.

    Article  Google Scholar 

  80. Wakasugi, T.; Isobe, S.; Umeda, A.; Wang, Y. M.; Hashimoto, N.; Ohnuki, S. Development and application of a window-type environmental cell in high voltage electron microscope. J. Alloys Compd. 2013, 580, S127–S130.

    Article  Google Scholar 

  81. McDonald, M. L.; Gibson, J. M.; Unterwald, F. C. Design of an ultrahigh-vacuum specimen environment for highresolution transmission electron microscopy. Rev. Sci. Instrum. 1989, 60, 700–707.

    Article  Google Scholar 

  82. Hammar, M.; LeGoues, F. K.; Tersoff, J.; Reuter, M. C.; Tromp, R. M. In situ ultrahigh vacuum transmission electron microscopy studies of hetero-epitaxial growth. I. Si(001)/Ge. Surf. Sci. 1996, 349, 129–144.

    Article  Google Scholar 

  83. Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquidsolid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

    Article  Google Scholar 

  84. Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R. R.; Yang, P. D. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.

    Article  Google Scholar 

  85. Taheri, M. L.; Reed, B. W.; LaGrange, T. B.; Browning, N. D. In situ laser synthesis of Si nanowires in the dynamic TEM. Small 2008, 4, 2187–2190.

    Article  Google Scholar 

  86. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  87. Kim, B. J.; Tersoff, J.; Wen, C. Y.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys. Rev. Lett. 2009, 103, 155701.

    Article  Google Scholar 

  88. Kim, B. J.; Tersoff, J.; Kodambaka, S.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 2008, 322, 1070–1073.

    Article  Google Scholar 

  89. Li, A.; Sibirev, N. V.; Ercolani, D.; Dubrovskii, V. G.; Sorba, L. Readsorption assisted growth of InAs/InSb heterostructured nanowire arrays. Cryst. Growth Des. 2013, 13, 878–882.

    Article  Google Scholar 

  90. Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.

    Article  Google Scholar 

  91. Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.

    Article  Google Scholar 

  92. Kodambaka, S.; Hannon, J. B.; Tromp, R. M.; Ross, F. M. Control of Si nanowire growth by oxygen. Nano Lett. 2006, 6, 1292–1296.

    Article  Google Scholar 

  93. Schwarz, K. W.; Tersoff, J. Elementary processes in nanowire growth. Nano Lett. 2011, 11, 316–320.

    Article  Google Scholar 

  94. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

    Article  Google Scholar 

  95. Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; Zakharov, D. N.; Ross, F. M.; Stach, E. A. The role of surface passivation in controlling Ge nanowire faceting. Nano Lett. 2015, 15, 8211–8216.

    Article  Google Scholar 

  96. Diaz, R. E.; Sharma, R.; Jarvis, K.; Zhang, Q. L.; Mahajan, S. Direct observation of nucleation and early stages of growth of GaN nanowires. J. Cryst. Growth 2012, 341, 1–6.

    Article  Google Scholar 

  97. Gamalski, A. D.; Tersoff, J.; Stach, E. A. Atomic resolution in situ imaging of a double-bilayer multistep growth mode in gallium nitride nanowires. Nano Lett. 2016, 16, 2283–2288.

    Article  Google Scholar 

  98. Chou, Y. C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of III-V nanowire growth kinetics. Science 2014, 343, 281–284.

    Article  Google Scholar 

  99. Wen, C. Y.; Tersoff, J.; Hillerich, K.; Reuter, M. C.; Park, J. H.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 2011, 107, 025503.

    Article  Google Scholar 

  100. Lenrick, F.; Ek, M.; Deppert, K.; Samuelson, L.; Reine Wallenberg, L. Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. Nano Res. 2014, 7, 1188–1194.

    Article  Google Scholar 

  101. Hofmann, S.; Sharma, R.; Wirth, C. T.; Cervantes-Sodi, F.; Ducati, C.; Kasama, T.; Dunin-Borkowski, R. E.; Drucker, J.; Bennett, P.; Robertson, J. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater. 2008, 7, 372–375.

    Article  Google Scholar 

  102. Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicongermanium nanowires. Science 2009, 326, 1247–1250.

    Article  Google Scholar 

  103. Wen, C. Y.; Reuter, M. C.; Tersoff, J.; Stach, E. A.; Ross, F. M. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires. Nano Lett. 2010, 10, 514–519.

    Article  Google Scholar 

  104. Chou, Y. C.; Wen, C. Y.; Reuter, M. C.; Su, D.; Stach, E. A.; Ross, F. M. Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. ACS Nano 2012, 6, 6407–6415.

    Article  Google Scholar 

  105. Chou, Y. C.; Panciera, F.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy. Chem. Commun. 2016, 52, 5686–5689.

    Article  Google Scholar 

  106. Chen, C. L.; Mori, H. In situ TEM observation of the growth and decomposition of monoclinic W18O49 nanowires. Nanotechnology 2009, 20, 285604.

    Article  Google Scholar 

  107. Tokunaga, T.; Kawamoto, T.; Tanaka, K.; Nakamura, N.; Hayashi, Y.; Sasaki, K.; Kuroda, K.; Yamamoto, T. Growth and structure analysis of tungsten oxide nanorods using environmental TEM. Nanoscale Res. Lett. 2012, 7, 85.

    Article  Google Scholar 

  108. Duchstein, L. D. L.; Damsgaard, C. D.; Hansen, T. W.; Wagner, J. B. Low-pressure ETEM studies of Au assisted MgO nanorod growth. J. Phys. 2014, 522, 012010.

    Google Scholar 

  109. Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 2014, 14, 5810–5813.

    Article  Google Scholar 

  110. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 2006, 96, 096105.

    Article  Google Scholar 

  111. Wen, C. Y.; Tersoff, J.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Step-flow kinetics in nanowire growth. Phys. Rev. Lett. 2010, 105, 195502.

    Article  Google Scholar 

  112. Schwarz, K. W.; Tersoff, J.; Kodambaka, S.; Ross, F. M. Jumping-catalyst dynamics in nanowire growth. Phys. Rev. Lett. 2014, 113, 055501.

    Article  Google Scholar 

  113. Kolibal, M.; Vystavěl, T.; Varga, P.; Šikola, T. Real-time observation of collector droplet oscillations during growth of straight nanowires. Nano Lett. 2014, 14, 1756–1761.

    Article  Google Scholar 

  114. Oh, S. H.; Chisholm, M. F.; Kauffmann, Y.; Kaplan, W. D.; Luo, W. D.; Rühle, M.; Scheu, C. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 2010, 330, 489–493.

    Article  Google Scholar 

  115. Gamalski, A. D.; Ducati, C.; Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 2011, 115, 4413–4417.

    Article  Google Scholar 

  116. Zhang, Z. F.; Wang, Y.; Li, H. B.; Yuan, W. T.; Zhang, X. F.; Sun, C. H.; Zhang, Z. Atomic-scale observation of vapor–solid nanowire growth via oscillatory mass transport. ACS Nano 2016, 10, 763–769.

    Article  Google Scholar 

  117. Zhang, Z. F.; Chen, J. L.; Li, H. B.; Zhang, Z.; Wang, Y. Vapor–solid nanotube growth via sidewall epitaxy in an environmental transmission electron microscope. Cryst. Growth Des. 2017, 17, 11–15.

    Article  Google Scholar 

  118. Schwarz, K. W.; Tersoff, J. From droplets to nanowires: Dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 2009, 102, 206101.

    Article  Google Scholar 

  119. Tersoff, J.; Denier van der Gon, A. W.; Tromp, R. M. Shape oscillations in growth of small crystals. Phys. Rev. Lett. 1993, 70, 1143–1146.

    Article  Google Scholar 

  120. Yuan, W. T.; Yu, J.; Li, H. B.; Zhang, Z.; Sun, C. H.; Wang, Y. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen. Nano Res. 2017, 10, 397–404.

    Article  Google Scholar 

  121. Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor−liquid−solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.

    Article  Google Scholar 

  122. Hillerich, K.; Dick, K. A.; Wen, C. Y.; Reuter, M. C.; Kodambaka, S.; Ross, F. M. Strategies to control morphology in hybrid group III-V/group IV heterostructure nanowires. Nano Lett. 2013, 13, 903–908.

    Article  Google Scholar 

  123. Schwarz, K. W.; Tersoff, J. Multiplicity of steady modes of nanowire growth. Nano Lett. 2012, 12, 1329–1332.

    Article  Google Scholar 

  124. Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

    Article  Google Scholar 

  125. Panciera, F.; Chou, Y. C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M. Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat. Mater. 2015, 14, 820–825.

    Article  Google Scholar 

  126. Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

    Article  Google Scholar 

  127. Lehmann, S.; Wallentin, J.; Jacobsson, D.; Deppert, K.; Dick, K. A. A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. Nano Lett. 2013, 13, 4099–4105.

    Article  Google Scholar 

  128. Assali, S.; Gagliano, L.; Oliveira, D. S.; Verheijen, M. A.; Plissard, S. R.; Feiner, L. F.; Bakkers, E. P. A. M. Exploring crystal phase switching in GaP nanowires. Nano Lett. 2015, 15, 8062–8069.

    Article  Google Scholar 

  129. Li, A.; Zou, J.; Han, X. D. Growth of III-V semiconductor nanowires and their heterostructures. Sci. China-Mater. 2016, 59, 51–91.

    Article  Google Scholar 

  130. Dubrovskii, V. G. Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires. Appl. Phys. Lett. 2014, 104, 053110.

    Article  Google Scholar 

  131. Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

    Article  Google Scholar 

  132. Su, D. S.; Zhang, B. S.; Schlögl, R. Electron microscopy of solid catalysts-transforming from a challenge to a toolbox. Chem. Rev. 2015, 115, 2818–2882.

    Article  Google Scholar 

  133. Akita, T.; Kohyama, M.; Haruta, M. Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc. Chem. Res. 2013, 46, 1773–1782.

    Article  Google Scholar 

  134. Friedrich, H.; de Jongh, P. E.; Verkleij, A. J.; de Jong, K. P. Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 2009, 109, 1613–1629.

    Article  Google Scholar 

  135. Liu, J. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 2011, 3, 934–948.

    Article  Google Scholar 

  136. Datye, A. K. Electron microscopy of catalysts: Recent achievements and future prospects. J. Catal. 2003, 216, 144–154.

    Article  Google Scholar 

  137. Gai, P. L. Developments of electron microscopy methods in the study of catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5, 371–380.

    Article  Google Scholar 

  138. Zhou, W.; Wachs, I. E.; Kiely, C. J. Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr. Opin. Solid State Mater. Sci. 2012, 16, 10–22.

    Article  Google Scholar 

  139. Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis; John Wiley and Sons, Inc.: Weinheim, 1997.

    Book  Google Scholar 

  140. Baker, R. T. K.; Harris, P. S.; Thomas, R. B. Direct observation of particle mobility on a surface in a gaseous environment. Surf. Sci. 1974, 46, 311–316.

    Article  Google Scholar 

  141. Baker, R. T. K.; Thomas, C.; Thomas, R. B. Continuous observation of the particle size behavior of platinum on alumina. J. Catal. 1975, 38, 510–513.

    Article  Google Scholar 

  142. Gai, P. L.; Boyes, E. D. Environmental high resolution electron microscopy in materials science. In In-situ Microscopy in Materials Research: Leading International Research in Electron and Scanning Probe Microscopies; Gai, P. L., Ed.; Springer: New York, 1997; pp 123–147.

    Chapter  Google Scholar 

  143. Liu, R.-J.; Crozier, P. A.; Smith, C. M.; Hucul, D. A.; Blackson, J.; Salaita, G. In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes. Microsc. Microanal. 2004, 10, 77–85.

    Article  Google Scholar 

  144. Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Direct observations of oxygeninduced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 2010, 132, 7968–7975.

    Article  Google Scholar 

  145. Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. J. Catal. 2011, 281, 147–155.

    Article  Google Scholar 

  146. Di Vece, M.; Bals, S.; Verbeeck, J.; Lievens, P.; Van Tendeloo, G. Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Phys. Rev. B 2009, 80, 125420.

    Article  Google Scholar 

  147. Wang, Z. L.; Shapiro, A. J. Energy-filtering and compositionsensitive imaging in surface and interface studies using HREM. Ultramicroscopy 1995, 60, 115–135.

    Article  Google Scholar 

  148. Williams, E. D.; Marks, L. D. New and emerging techniques for imaging surfaces. Crit. Rev. Surf. Chem. 1995, 5, 275–303.

    Google Scholar 

  149. Yu, R.; Hu, L. H.; Cheng, Z. Y.; Li, Y. D.; Ye, H. Q.; Zhu, J. Direct subangstrom measurement of surfaces of oxide particles. Phys. Rev. Lett. 2010, 105, 226101.

    Article  Google Scholar 

  150. Grozea, D.; Landree, E.; Collazo-Davila, C.; Bengu, E.; Plass, R.; Marks, L. D. Structural investigations of metalsemiconductor surfaces. Micron 1999, 30, 41–49.

    Article  Google Scholar 

  151. Chang, T. Y.; Tanaka, Y.; Ishikawa, R.; Toyoura, K.; Matsunaga, K.; Ikuhara, Y.; Shibata, N. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces. Nano Lett. 2014, 14, 134–138.

    Article  Google Scholar 

  152. Eng, P. J.; Trainor, T. P.; Brown, G. E., Jr.; Waychunas, G. A.; Newville, M.; Sutton, S. R.; Rivers, M. L. Structure of the hydrated α-Al2O3 (0001) surface. Science 2000, 288, 1029–1033.

    Article  Google Scholar 

  153. Barth, C.; Reichling, M. Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 2001, 414, 54–57.

    Article  Google Scholar 

  154. Liu, P.; Kendelewicz, T.; Brown, G. E., Jr.; Nelson, E. J.; Chambers, S. A. Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces: Synchrotron X-ray photoemission studies and thermodynamic calculations. Surf. Sci. 1998, 417, 53–65.

    Article  Google Scholar 

  155. Tao, F.; Dag, S.; Wang, L.-W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850–853.

    Article  Google Scholar 

  156. Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

    Article  Google Scholar 

  157. Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; Sun, K. J.; Tanaka, S.; Kohyama, M.; Shimada, S.; Haruta, M.; Takeda, S. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 2012, 335, 317–319.

    Article  Google Scholar 

  158. Tanner, R. E.; Sasahara, A.; Liang, Y.; Altman, E. I.; Onishi, H. Formic acid adsorption on anatase TiO2(001)− (1 × 4) thin films studied by NC-AFM and STM. J. Phys. Chem. B 2002, 106, 8211–8222.

    Article  Google Scholar 

  159. Wang, Y.; Sun, H. J.; Tan, S. J.; Feng, H.; Cheng, Z. W.; Zhao, J.; Zhao, A. D.; Wang, B.; Luo, Y.; Yang, J. L. et al. Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat. Commun. 2013, 4, 2214.

    Google Scholar 

  160. Li, H. B.; Yuan, W. T.; Jiang, Y.; Zhang, Z. F.; Zhang, Z.; Wang, Y. Observation of Pt-{100}-p(2×2)-O reconstruction by an environmental TEM. Prog. Nat. Sci. 2016, 26, 308–311.

    Article  Google Scholar 

  161. Yuan, W. T.; Wang, Y.; Li, H. B.; Wu, H. L.; Zhang, Z.; Selloni, A.; Sun, C. H. Real-time observation of reconstruction dynamics on TiO2(001) surface under oxygen via an environmental transmission electron microscope. Nano Lett. 2016, 16, 132–137.

    Article  Google Scholar 

  162. Yuan, W. T.; Jiang, Y.; Wang, Y.; Kattel, S.; Zhang, Z. F.; Chou, L. Y.; Tsung, C. K.; Wei, X.; Li, J. X.; Zhang, X. F. et al. In situ observation of facet-dependent oxidation of graphene on platinum in an environmental TEM. Chem. Commun. 2015, 51, 350–353.

    Article  Google Scholar 

  163. Zhang, L. X.; Miller, B. K.; Crozier, P. A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 2013, 13, 679–684.

    Article  Google Scholar 

  164. Newton, M. A.; Belver-Coldeira, C.; Martínez-Arias, A.; Fernández-García, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat. Mater. 2007, 6, 528–532.

    Article  Google Scholar 

  165. Nolte, P.; Stierle, A.; Jin-Phillipp, N. Y.; Kasper, N.; Schulli, T. U.; Dosch, H. Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 2008, 321, 1654–1658.

    Article  Google Scholar 

  166. Yoshida, H.; Matsuura, K.; Kuwauchi, Y.; Kohno, H.; Shimada, S.; Haruta, M.; Takeda, S. Temperature-dependent change in shape of platinum nanoparticles supported on CeO2 during catalytic reactions. Appl. Phys. Express 2011, 4, 065001.

    Article  Google Scholar 

  167. Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 2002, 295, 2053–2055.

    Article  Google Scholar 

  168. Uchiyama, T.; Yoshida, H.; Kuwauchi, Y.; Ichikawa, S.; Shimada, S.; Haruta, M.; Takeda, S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem., Int. Ed. 2011, 50, 10157–10160.

    Article  Google Scholar 

  169. Jiang, Y.; Li, H. B.; Wu, Z. M.; Ye, W. Y.; Zhang, H.; Wang, Y.; Sun, C. H.; Zhang, Z. In situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem., Int. Ed. 2016, 55, 12427–12430.

    Article  Google Scholar 

  170. Zhu, B. B.; Xu, Z.; Wang, C. L.; Gao, Y. Shape evolution of metal nanoparticles in water vapor environment. Nano Lett. 2016, 16, 2628–2632.

    Article  Google Scholar 

  171. Zhang, S. Y.; Plessow, P. N.; Willis, J. J.; Dai, S.; Xu, M. J.; Graham, G. W.; Cargnello, M.; Abild-Pedersen, F.; Pan, X. Q. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 2016, 16, 4528–4534.

    Article  Google Scholar 

  172. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core–shell nanoparticles. Science 2008, 322, 932–934.

    Article  Google Scholar 

  173. Gao, F.; Wang, Y. L.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms. J. Am. Chem. Soc. 2009, 131, 5734–5735.

    Article  Google Scholar 

  174. Gao, F.; Wang, Y. L.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 2009, 113, 14993–15000.

    Article  Google Scholar 

  175. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Aksoy, F.; Aloni, S.; Altoe, V.; Alayoglu, S.; Renzas, J. R.; Tsung, C.-K. et al. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J. Am. Chem. Soc. 2010, 132, 8697–8703.

    Article  Google Scholar 

  176. Wang, L.-L.; Tan, T. L.; Johnson, D. D. Configurational thermodynamics of alloyed nanoparticles with adsorbates. Nano Lett. 2014, 14, 7077–7084.

    Article  Google Scholar 

  177. Xin, H. L.; Alayoglu, S.; Tao, R. Z.; Genc, A.; Wang, C.-M.; Kovarik, L.; Stach, E. A.; Wang, L.-W.; Salmeron, M.; Somorjai, G. A. et al. Revealing the atomic restructuring of Pt-Co nanoparticles. Nano Lett. 2014, 14, 3203–3207.

    Article  Google Scholar 

  178. Wu, Y. A.; Li, L.; Li, Z.; Kinaci, A.; Chan, M. K. Y.; Sun, Y. G.; Guest, J. R.; McNulty, I.; Rajh, T.; Liu, Y. Z. Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 2016, 10, 3738–3746.

    Article  Google Scholar 

  179. Inukai, J.; Tryk, D. A.; Abe, T.; Wakisaka, M.; Uchida, H.; Watanabe, M. Direct STM elucidation of the effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation. J. Am. Chem. Soc. 2013, 135, 1476–1490.

    Article  Google Scholar 

  180. Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.

    Article  Google Scholar 

  181. Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

    Article  Google Scholar 

  182. Johnson, W. H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. Roy. Soc. Lond. 1874, 23, 168–179.

    Article  Google Scholar 

  183. Tabata, T.; Birnbaum, H. K. Direct observations of hydrogen enhanced crack propagation in iron. Scripta Metall. 1984, 18, 231–236.

    Article  Google Scholar 

  184. Tabata, T.; Birnbaum, H. K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron. Scripta Metall. 1983, 17, 947–950.

    Article  Google Scholar 

  185. Robertson, I. M.; Birnbaum, H. K. An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall. 1986, 34, 353–366.

    Article  Google Scholar 

  186. Bond, G. M.; Robertson, I. M.; Birnbaum, H. K. Effects of hydrogen on deformation and fracture processes in highourity aluminium. Acta Metall. 1988, 36, 2193–2197.

    Article  Google Scholar 

  187. Rozenak, P.; Robertson, I. M.; Birnbaum, H. K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel. Acta Metall. Mater. 1990, 38, 2031–2040.

    Article  Google Scholar 

  188. Hänninen, H. E.; Lee, T. C.; Robertson, I. M.; Birnbaum, H. K. In situ observations on effects of hydrogen on deformation and fracture of A533B pressure vessel steel. J. Mater. Eng. Perform. 1993, 2, 807–817.

    Article  Google Scholar 

  189. Zheng, S. J.; Wang, Y. J.; Zhang, B.; Zhu, Y. L.; Liu, C.; Hu, P.; Ma, X. L. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels. Acta Mater. 2010, 58, 5070–5085.

    Article  Google Scholar 

  190. Zhang, B.; Wang, J.; Wu, B.; Zhou, Y. T.; Ma, X. L. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel. Corros. Sci. 2015, 100, 295–305.

    Article  Google Scholar 

  191. Malladi, S. R. K.; Tichelaar, F. D.; Xu, Q.; Wu, M. Y.; Terryn, H.; Mol, J. M. C.; Hannour, F.; Zandbergen, H. W. Quasi in situ analytical TEM to investigate electrochemically induced microstructural changes in alloys: AA2024-T3 as an example. Corros. Sci. 2013, 69, 221–225.

    Article  Google Scholar 

  192. Chenna, S.; Crozier, P. A. Operando transmission electron microscopy: A technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal. 2012, 2, 2395–2402.

    Article  Google Scholar 

  193. Zewail, A. H. Four-dimensional electron microscopy. Science 2010, 328, 187–193.

    Article  Google Scholar 

  194. Flannigan, D. J.; Zewail, A. H. 4D electron microscopy: Principles and applications. Acc. Chem. Res. 2012, 45, 1828–1839.

    Article  Google Scholar 

  195. Xie, D. G.; Li, S. Z.; Li, M.; Wang, Z. J.; Gumbsch, P.; Sun, J.; Ma, E.; Li, J.; Shan, Z. W. Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 2016, 7, 13341.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Nos. 51390474, 91645103, 11234011, and 11327901) and the Ministry of Education of China (No. IRT13037). The authors thank DENSsolutions for providing Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Wang or Ze Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, Z., Yuan, W. et al. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 11, 42–67 (2018). https://doi.org/10.1007/s12274-017-1645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1645-9

Keywords

Navigation