Skip to main content
Log in

Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)2/CNs hybrid achieves a large capacitance of 2,218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10,000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544–3552.

    Article  Google Scholar 

  2. Hu, Y. T.; Guan, C.; Ke, Q. Q.; Yow, Z. F.; Cheng, C. W.; Wang, J. Hybrid Fe2O3 nanoparticle clusters/rGO paper as an effective negative electrode for flexible supercapacitors. Chem. Mater. 2016, 28, 7296–7303.

    Article  Google Scholar 

  3. Chi, Y.-W.; Hu, C.-C.; Shen, H.-H.; Huang, K.-P. New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett. 2016, 16, 5719–5727.

    Article  Google Scholar 

  4. Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541–3545.

    Article  Google Scholar 

  5. Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

    Article  Google Scholar 

  6. Liang, D. W.; Wu, S. L.; Liu, J.; Tian, Z. F.; Liang, C. H. Co-doped Ni hydroxide and oxide nanosheet networks: Laser-assisted synthesis, effective doping, and ultrahigh pseudocapacitor performance. J. Mater. Chem. A 2016, 4, 10609–10617.

    Article  Google Scholar 

  7. Liu, X. Y.; Gao, Y. Q.; Yang, G. W. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 2016, 8, 4227–4235.

    Article  Google Scholar 

  8. Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11–19.

    Article  Google Scholar 

  9. Le Comte, A.; Brousse, T.; Belanger, D. New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. J. Power Sources 2016, 326, 702–710.

    Article  Google Scholar 

  10. Zhang, C. Q.; Chen, Q. D.; Zhan, H. B. Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22977–22987.

    Article  Google Scholar 

  11. Shi, D.; Zhang, L.; Yin, X.; Huang, T. J.; Gong, H. A one step processed advanced interwoven architecture of Ni(OH)2 and Cu nanosheets with ultrahigh supercapacitor performance. J. Mater. Chem. A 2016, 4, 12144–12151.

    Article  Google Scholar 

  12. Wang, R. H.; Jayakumar, A.; Xu, C. H.; Lee, J.-M. Ni(OH)2 nanoflowers/graphene hydrogels: A new assembly for supercapacitors. ACS Sustainable Chem. Eng. 2016, 4, 3736–3742.

    Article  Google Scholar 

  13. Min, S. D.; Zhao, C. J.; Zhang, Z. M.; Chen, G. R.; Qian, X. Z.; Guo, Z. P. Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 2015, 3, 3641–3650.

    Article  Google Scholar 

  14. Chen, X.; Long, C. L.; Lin, C. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochim. Acta 2014, 137, 352–358.

    Article  Google Scholar 

  15. Lee, G.; Varanasi, C. V.; Liu, J. Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 2015, 7, 3181–3188.

    Article  Google Scholar 

  16. Xie, M. J.; Duan, S. Y.; Shen, Y.; Fang, K.; Wang, Y. Z.; Lin, M.; Guo, X. F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814–819.

    Article  Google Scholar 

  17. Ma, X. W.; Li, Y.; Wen, Z. W.; Gao, F. X.; Liang, C. Y.; Che, R. C. Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials. ACS Appl. Mater. Interfaces 2015, 7, 974–979.

    Article  Google Scholar 

  18. Liu, Y. H.; Wang, R. T.; Yan, X. B. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in highperformance asymmetric supercapacitor. Sci. Rep. 2015, 5, 11095.

    Article  Google Scholar 

  19. Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

    Article  Google Scholar 

  20. Patil, U.; Lee, S. C.; Kulkarni, S.; Sohn, J. S.; Nam, M. S.; Han, S.; Jun, S. C. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 2015, 7, 6999–7021.

    Article  Google Scholar 

  21. Tang, C.; Wang, H.-S.; Wang, H.-F.; Zhang, Q.; Tian, G.-L.; Nie, J.-Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

    Article  Google Scholar 

  22. Li, M. M.; Tang, M. H.; Deng, J.; Wang, Y. Nitrogen-doped flower-like porous carbon materials directed by in situ hydrolysed MgO: Promising support for Ru nanoparticles in catalytic hydrogenations. Nano Res. 2016, 9, 3129–3140.

    Article  Google Scholar 

  23. Li, W.; Xin, L. P.; Xu, X.; Liu, Q. D.; Zhang, M.; Ding, S. J.; Zhao, M. S.; Lou, X. J. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors. Sci. Rep. 2015, 5, 9277.

    Article  Google Scholar 

  24. Xie, M. J.; Yang, J.; Liang, J. Y.; Guo, X. F.; Ding, W. P. In situ hydrothermal deposition as an efficient catalyst supporting method towards low-temperature graphitization of amorphous carbon. Carbon 2014, 77, 215–225.

    Article  Google Scholar 

  25. Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 20773063, 20773062, 21173119, and 21273109), the Fundamental Research Funds for the Central Universities. The authors also thank the support from the Hubei Key Laboratory for Processing and Application of Catalytic Materials (No. CH201401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Guo or Weiping Ding.

Electronic supplementary material

12274_2017_1621_MOESM1_ESM.pdf

Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Xu, Z., Duan, S. et al. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 11, 216–224 (2018). https://doi.org/10.1007/s12274-017-1621-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1621-4

Keywords

Navigation