Skip to main content
Log in

Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The atomic force microscope has become an established research tool for imaging microorganisms with unprecedented resolution. However, its use in microbiology has been limited by the difficulty of proper bacterial immobilization. Here, we have developed a microfluidic device that solves the issue of bacterial immobilization for atomic force microscopy under physiological conditions. Our device is able to rapidly immobilize bacteria in well-defined positions and subsequently release the cells for quick sample exchange. The developed device also allows simultaneous fluorescence analysis to assess the bacterial viability during atomic force microscope imaging. We demonstrated the potential of our approach for the immobilization of rod-shaped Escherichia coli and Bacillus subtilis. Using our device, we observed buffer-dependent morphological changes of the bacterial envelope mediated by the antimicrobial peptide CM15. Our approach to bacterial immobilization makes sample preparation much simpler and more reliable, thereby accelerating atomic force microscopy studies at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beveridge, T. J.; Graham, L. L. Surface layers of bacteria. Microbiol. Rev. 1992, 55, 684–705.

    Google Scholar 

  2. Butt, H. J.; Wolff, E. K.; Gould, S. A. C.; Dixon Northern, B.; Peterson, C. M.; Hansma, P. K. Imaging cells with the atomic force microscope. J. Struct. Biol. 1990, 105, 54–61.

    Article  Google Scholar 

  3. Pum, D.; Sleytr, U. B. Monomolecular reassembly of a crystalline bacterial cell surface layer (S-layer) on untreated and modified silicon surfaces. Supramol. Sci. 1995, 2, 193–197.

    Article  Google Scholar 

  4. Schabert, F.; Henn, C.; Engel, A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 1995, 268, 92–94.

    Article  Google Scholar 

  5. Drake, B.; Prater, C.; Weisenhorn, A.; Gould, S.; Albrecht, T.; Quate, C.; Cannell, D.; Hansma, H.; Hansma, P. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 1989, 243, 1586–1589.

    Article  Google Scholar 

  6. Beaussart, A.; Baker, A. E.; Kuchma, S. L.; El-Kirat-Chatel, S.; O’Toole, G. A.; Dufrêne, Y. F. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pili. ACS Nano 2014, 8, 10723–10733.

    Article  Google Scholar 

  7. Hayhurst, E. J.; Kailas, L.; Hobbs, J. K.; Foster, S. J. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2008, 105, 14603–14608.

    Article  Google Scholar 

  8. Fantner, G. E.; Barbero, R. J.; Gray, D. S.; Belcher, A. M. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat. Nanotechnol. 2010, 5, 280–285.

    Article  Google Scholar 

  9. Dufrêne, Y. F.; Martínez-Martín, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847–854.

    Article  Google Scholar 

  10. Ando, T.; Uchihashi, T.; Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 2014, 114, 3120–3188.

    Article  Google Scholar 

  11. Radmacher, M.; Tillmann, R. W.; Fritz, M.; Gaub, H. E. From molecules to cells: Imaging soft samples with the atomic force microscope. Science 1992, 257, 1900–1905.

    Article  Google Scholar 

  12. Dufrêne, Y. F. Using nanotechniques to explore microbial surfaces. Nat. Rev. Microbiol. 2004, 2, 451–460.

    Article  Google Scholar 

  13. Karrasch, S.; Dolder, M.; Schabert, F.; Ramsden, J.; Engel, A. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 1993, 65, 2437–2446.

    Article  Google Scholar 

  14. Kasas, S.; Ikai, A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 1995, 68, 1678–1680.

    Article  Google Scholar 

  15. Razatos, A.; Ong, Y. L.; Sharma, M. M.; Georgiou, G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 1998, 95, 11059–11064.

    Article  Google Scholar 

  16. Meyer, R. L.; Zhou, X. F.; Tang, L.; Arpanaei, A.; Kingshott, P.; Besenbacher, F. Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 2010, 110, 1349–1357.

    Article  Google Scholar 

  17. Liu, Y.; Strauss, J.; Camesano, T. A. Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins. Biomaterials 2008, 29, 4374–4382.

    Article  Google Scholar 

  18. Vadillo-Rodríguez, V.; Busscher, H. J.; Van Der Mei, H. C.; De Vries, J.; Norde, W. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surf. B Biointerfaces 2005, 41, 33–41.

    Article  Google Scholar 

  19. Zhang, T.; Chao, Y. Q.; Shih, K.; Li, X. Y.; Fang, H. H. P. Quantification of the lateral detachment force for bacterial cells using atomic force microscope and centrifugation. Ultramicroscopy 2011, 111, 131–139.

    Article  Google Scholar 

  20. Vadillo-Rodriguez, V.; Busscher, H. J.; Norde, W.; de Vries, J.; Dijkstra, R. J. B.; Stokroos, I.; van der Mei, H. C. Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl. Environ. Microbiol. 2004, 70, 5441–5446.

    Article  Google Scholar 

  21. van der Mei, H. C.; Busscher, H. J.; Bos, R.; de Vries, J.; Boonaert, C. J. P.; Dufrêne, Y. F. Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys. J. 2000, 78, 2668–2674.

    Article  Google Scholar 

  22. Odermatt, P. D.; Shivanandan, A.; Deschout, H.; Jankele, R.; Nievergelt, A. P.; Feletti, L.; Davidson, M. W.; Radenovic, A.; Fantner, G. E. High-resolution correlative microscopy: Bridging the gap between single molecule localization microscopy and atomic force microscopy. Nano Lett. 2015, 15, 4896–4904.

    Article  Google Scholar 

  23. Hertz, H. Ueber die Berührung fester elastischer Körper. J. Für Die Reine Und Angew. Math. 1882, 92, 156–171.

    Google Scholar 

  24. Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface energy and the contact of elastic solids. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1971, 324, 301–313.

    Article  Google Scholar 

  25. Derjaguin, B. V; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326.

    Article  Google Scholar 

  26. Butt, H. J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152.

    Article  Google Scholar 

  27. Huang, L. R.; Cox, E. C.; Austin, R. H.; Sturm, J. C. Continuous particle separation through deterministic lateral displacement. Science 2004, 304, 987–990.

    Article  Google Scholar 

  28. Wyatt Shields IV, C.; Reyes, C. D.; López, G. P. Microfluidic cell sorting: Areview of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015, 15, 1230–1249.

    Article  Google Scholar 

  29. Dufrêne, Y. F. Atomic force microscopy in microbiology: New structural and functional insights into the microbial cell surface. mBio 2014, 5, e01363–14.

    Article  Google Scholar 

  30. Longo, G.; Kasas, S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 230–244.

    Article  Google Scholar 

  31. Braga, P. C.; Ricci, D. Atomic force microscopy: Application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob. Agents Chemother. 1998, 42, 18–22.

    Google Scholar 

  32. Francius, G.; Domenech, O.; Mingeot-Leclercq, M. P.; Dufrêne, Y. F. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J. Bacteriol. 2008, 190, 7904–7909.

    Article  Google Scholar 

  33. Yeaman, M. R.; Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55.

    Article  Google Scholar 

  34. Brogden, K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250.

    Article  Google Scholar 

  35. Peraro, M. D.; van der Goot, F. G. Pore-forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92.

    Article  Google Scholar 

  36. Sato, H.; Feix, J. B. Osmoprotection of bacterial cells from toxicity caused by antimicrobial hybrid peptide CM15. Biochemistry 2006, 45, 9997–10007.

    Article  Google Scholar 

  37. Dufrêne, Y. F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat. Protoc. 2008, 3, 1132–1138.

    Article  Google Scholar 

  38. Liu, Y. T.; Camesano, T. A. Immobilizing bacteria for atomic force microscopy imaging or force measurements in liquids. In Microbial Surfaces: Structure, Interactions, and Reactivity. Camesano, T. A.; Mello, C. M., Eds.; American Chemical Society: San Francisco, 2008; pp. 163–188.

    Chapter  Google Scholar 

  39. Doktycz, M. J.; Sullivan, C. J.; Hoyt, P. R.; Pelletier, D. A.; Wu, S.; Allison, D. P. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 2003, 97, 209–216.

    Article  Google Scholar 

  40. Obst, M.; Dittrich, M. Living under an atomic force microscope. Geobiology 2005, 3, 179–193.

    Article  Google Scholar 

  41. Allison, D. P.; Sullivan, C. J.; Mortensen, N. P.; Retterer, S. T.; Doktycz, M. Bacterial immobilization for imaging by atomic force microscopy. J. Vis. Exp. 2011, 2880.

    Google Scholar 

  42. Pelling, A. E.; Li, Y.; Shi, W.; Gimzewski, J. K. Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 6484–6489.

    Article  Google Scholar 

  43. Read, N.; Connell, S.; Adams, D. G. Nanoscale visualization of a fibrillar array in the cell wall of filamentous cyanobacteria and its implications for gliding motility. J. Bacteriol. 2007, 189, 7361–7366.

    Article  Google Scholar 

  44. Liu, B. Y.; Zhang, G. M.; Li, X. L.; Chen, H. Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy. Scanning 2012, 34, 6–11.

    Article  Google Scholar 

  45. Colville, K.; Tompkins, N.; Rutenberg, A. D.; Jericho, M. H. Effects of poly(L-lysine) substrates on attached Escherichia coli bacteria. Langmuir 2010, 26, 2639–2644.

    Article  Google Scholar 

  46. Turner, R. D.; Thomson, N. H.; Kirkham, J.; Devine, D. Improvement of the pore trapping method to immobilize vital coccoid bacteria for high-resolution AFM: A study of Staphylococcus aureus. J. Microsc. 2010, 238, 102–110.

    Article  Google Scholar 

  47. Kailas, L.; Ratcliffe, E. C.; Hayhurst, E. J.; Walker, M. G.; Foster, S. J.; Hobbs, J. K. Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 2009, 109, 775–780.

    Article  Google Scholar 

  48. Chen, P. P.; Xu, L. P.; Liu, J.; Hol, F. J. H.; Keymer, J. E.; Taddei, F.; Han, D.; Lindner, A. B. Nanoscale probing the kinetics of oriented bacterial cell growth using atomic force microscopy. Small 2014, 10, 3018–3025.

    Article  Google Scholar 

  49. Regehr, K. J.; Domenech, M.; Koepsel, J. T.; Carver, K. C.; Ellison-Zelski, S. J.; Murphy, W. L.; Schuler, L. A.; Alarid, E. T.; Beebe, D. J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009, 9, 2132–2139.

    Article  Google Scholar 

  50. Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015, 15, 36.

    Article  Google Scholar 

  51. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682.

    Article  Google Scholar 

  52. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

    Article  Google Scholar 

  53. Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

    Article  Google Scholar 

  54. Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Swiss National Science Foundation (Nos.205321_134786, 205320_152675), and by the European Union FP7/2007-2013/ERC under Grant Agreement No. 307338-NaMic, and Eurostars E!8213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg E. Fantner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peric, O., Hannebelle, M., Adams, J.D. et al. Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy. Nano Res. 10, 3896–3908 (2017). https://doi.org/10.1007/s12274-017-1604-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1604-5

Keywords

Navigation