Skip to main content
Log in

Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Penta-graphene (PG), a newly proposed two-dimensional material composed entirely of carbon pentagons, is believed to possess much lower failure stress and strain than those of graphene. An open question is whether and how these properties can be enhanced. Herein using molecular dynamics simulations, we examine the deformation and failure processes of PG functionalized with different functional groups. We reveal that complete chemical functionalization leads to remarkable increases in the failure stress and strain of PG by up to 86.6% and 82.4%, respectively. The underlying reason for this enhancement is that the buckled pentagonal rings in pristine and partially functionalized PGs can easily transform into planar polygon rings under stretching; in contrast, complete functionalization of PG strongly stabilizes its structure and prevents such transformation, thereby significantly increasing the failure stress and strain. Our findings suggest a possible route to enhance the mechanical properties of PG for potential applications in nanocomposites and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  3. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

    Article  Google Scholar 

  4. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  5. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  Google Scholar 

  6. Wu, Y. Q.; Jenkins, K. A.; Valdes-Garcia, A.; Farmer, D. B.; Zhu, Y.; Bol, A. A.; Dimitrakopoulos, C.; Zhu, W. J.; Xia, F. N.; Avouris, P. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 2012, 12, 3062–3067.

    Article  Google Scholar 

  7. Park, J. U.; Nam, S.; Lee, M. S.; Lieber, C. M. Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater. 2012, 11, 120–125.

    Article  Google Scholar 

  8. Das, T.; Jang, H.; Lee, J. B.; Chu, H.; Kim, S. D.; Ahn, J. H. Vertical field effect tunneling transistor based on grapheneultrathin Si nanomembrane heterostructures. 2D Mater. 2015, 2, 044006.

    Article  Google Scholar 

  9. Avouris, P.; Xia, F. N. Graphene applications in electronics and photonics. MRS Bull. 2012, 37, 1225–1234.

    Article  Google Scholar 

  10. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  11. Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerherg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

    Article  Google Scholar 

  12. Grantab, R.; Shenoy, V. B.; Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948.

    Article  Google Scholar 

  13. Wei, Y. J.; Wu, J. T.; Yin, H. Q.; Shi, X. H.; Yang, R. G.; Dresselhaus, M. The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 2012, 11, 759–763.

    Article  Google Scholar 

  14. Kuilla, T.; Bhadra, S.; Yao, D. H.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.

    Article  Google Scholar 

  15. Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H. H.; Yu, Z. Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890.

    Article  Google Scholar 

  16. Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.

    Article  Google Scholar 

  17. Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732.

    Article  Google Scholar 

  18. Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.

    Article  Google Scholar 

  19. Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene. J. Phys.: Condens. Matter 2009, 21, 344205.

    Google Scholar 

  20. Castellanos-Gomez, A.; Wojtaszek, M.; Arramel; Tombros, N.; van Wees, B. J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small 2012, 8, 1607–1613.

    Article  Google Scholar 

  21. Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597–4602.

    Article  Google Scholar 

  22. Johns, J. E.; Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 2013, 46, 77–86.

    Article  Google Scholar 

  23. Tang, Q.; Zhou, Z.; Chen, Z. F. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale 2013, 5, 4541–4583.

    Article  Google Scholar 

  24. Lonkar, S. P.; Deshmukh, Y. S.; Abdala, A. A. Recent advances in chemical modifications of graphene. Nano Res. 2015, 8, 1039–1074.

    Article  Google Scholar 

  25. Marsden, A. J.; Brommer, P.; Mudd, J. J.; Dyson, M. A.; Cook, R.; Asensio, M.; Avila, J.; Levy, A.; Sloan, J.; Quigley, D. et al. Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene. Nano Res. 2015, 8, 2620–2635.

    Article  Google Scholar 

  26. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

    Article  Google Scholar 

  27. Zhu, S. Z.; Li, T. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 2014, 8, 2864–2872.

    Article  Google Scholar 

  28. Zhang, Z. Q.; Liu, B.; Hwang, K. C.; Gao, H. J. Surface-adsorption-induced bending behaviors of graphene nanoribbons. Appl. Phys. Lett. 2011, 98, 121909.

    Article  Google Scholar 

  29. Liu, B.; Baimova, J. A.; Dmitriev, S. V.; Wang, X.; Zhu, H. W.; Zhou, K. Discrete breathers in hydrogenated graphene. J. Phys. D: Appl. Phys. 2013, 46, 305302.

    Article  Google Scholar 

  30. Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.

    Article  Google Scholar 

  31. Wang, Y.; Yang, C. H.; Cheng, Y.; Zhang, Y. Y. A molecular dynamics study on thermal and mechanical properties of graphene-paraffin nanocomposites. RSC Adv. 2015, 5, 82638–82644.

    Article  Google Scholar 

  32. Pei, Q. X.; Zhang, Y. W.; Shenoy, V. B. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 2010, 48, 898–904.

    Article  Google Scholar 

  33. Popova, N. A.; Sheka, E. F. Mechanochemical reaction in graphane under uniaxial tension. J. Phys. Chem. C 2011, 115, 23745–23754.

    Article  Google Scholar 

  34. Peng, Q.; Liang, C.; Ji, W.; De, S. A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Phys. Chem. Chem. Phys. 2013, 15, 2003–2011.

    Article  Google Scholar 

  35. Liu, L. Z.; Zhang, J. F.; Zhao, J. J.; Liu, F. Mechanical properties of graphene oxides. Nanoscale 2012, 4, 5910–5916.

    Article  Google Scholar 

  36. Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564.

    Article  Google Scholar 

  37. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  Google Scholar 

  38. Liu, Y. L.; Xie, B.; Zhang, Z.; Zheng, Q. S.; Xu, Z. P. Mechanical properties of graphene papers. J. Mech. Phys. Solids 2012, 60, 591–605.

    Article  Google Scholar 

  39. Zhang, S. H.; Zhou, J.; Wang, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372–2377.

    Article  Google Scholar 

  40. Wu, X. F.; Varshney, V.; Lee, J.; Zhang, T.; Wohlwend, J. L.; Roy, A. K.; Luo, T. F. Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett. 2016, 16, 3925–3935.

    Article  Google Scholar 

  41. Yu, Z. G.; Zhang, Y. W. A comparative density functional study on electrical properties of layered penta-graphene. J. Appl. Phys. 2015, 118, 165706.

    Article  Google Scholar 

  42. Xia, K. L.; Artyukhov, V. I.; Sun, L. F.; Zheng, J. Y.; Jiao, L. Y.; Yakobson, B. I.; Zhang, Y. Y. Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Res. 2016, 9, 2182–2189.

    Article  Google Scholar 

  43. Pei, Q. X.; Sha, Z. D.; Zhang, Y. W. A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon 2011, 49, 4752–4759.

    Article  Google Scholar 

  44. Zhang, Y. Y.; Pei, Q. X.; Wang, C. M. Mechanical properties of graphynes under tension: A molecular dynamics study. Appl. Phys. Lett. 2012, 101, 081909.

    Article  Google Scholar 

  45. Cranford, S. W. When is 6 less than 5? Penta-to hexagraphene transition. Carbon 2016, 96, 421–428.

    Article  Google Scholar 

  46. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    Article  Google Scholar 

  47. Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A., III. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053.

    Article  Google Scholar 

  48. Jensen, B. D.; Wise, K. E.; Odegard, G. M. Simulation of the elastic and ultimate tensile properties of diamond, graphene, carbon nanotubes, and amorphous carbon using a revised ReaxFF parametrization. J. Phys. Chem. A 2015, 119, 9710–9721.

    Article  Google Scholar 

  49. Cranford, S. W.; Buehler, M. J. Mechanical properties of graphyne. Carbon 2011, 49, 4111–4121.

    Article  Google Scholar 

  50. Nielson, K. D.; van Duin, A. C. T.; Oxgaard, J.; Deng, W. Q.; Goddard, W. A., III. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 2005, 109, 493–499.

    Article  Google Scholar 

  51. Diao, J. K.; Gall, K.; Dunn, M. L. Atomistic simulation of the structure and elastic properties of gold nanowires. J. Mech. Phys. Solids 2004, 52, 1935–1962.

    Article  Google Scholar 

  52. Xu, W.; Zhang, G.; Li, B. W. Thermal conductivity of pentagraphene from molecular dynamics study. J. Chem. Phys. 2015, 143, 154703.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the computational support provided by Intersect Australia Ltd and A*STAR Computational Resource Centre of Singapore. This work was partially supported by a grant from the Science and Engineering Research Council, A*STAR, Singapore (152-70-00017). H. J. G. acknowledges support from the National Science Foundation (No. CMMI- 1634492).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingxiang Pei or Huajian Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pei, Q., Sha, Z. et al. Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization. Nano Res. 10, 3865–3874 (2017). https://doi.org/10.1007/s12274-017-1600-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1600-9

Keywords

Navigation